Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nara, Yoshitaka*; Kato, Masaji*; Sato, Tsutomu*; Kono, Masanori*; Sato, Toshinori
Journal of MMIJ, 138(4), p.44 - 50, 2022/04
It is important to understand the long-term migration of radionuclides when considering rock engineering projects such as the geological disposal of radioactive waste. The network of fractures and pores in a rock mass plays a major role in fluid migration as it provides a pathway for fluid flow. The geometry of a network can change due to fracture sealing by some fine-grained materials over long-term periods. In the present study, we use a macro-fractured granite sample to investigate the change of permeability that occurs under the flow of water that includes two different amounts of clay. Findings showed that clay accumulated in a fracture and that the permeability (hydraulic conductivity) of the granite sample decreased over time, which was greater in for the higher clay content. We concluded that the accumulation of clay minerals in the fracture decreased the permeability of the rock. Furthermore, we consider that the filling and closure of fractures in rock is possible under the flow of groundwater that includes clay minerals.
Haba, Hiromitsu*; Fan, F.*; Kaji, Daiya*; Kasamatsu, Yoshitaka*; Kikunaga, Hidetoshi*; Komori, Yukiko*; Kondo, Narumi*; Kudo, Hisaaki*; Morimoto, Koji*; Morita, Kosuke*; et al.
Physical Review C, 102(2), p.024625_1 - 024625_12, 2020/08
Times Cited Count:6 Percentile:63.09(Physics, Nuclear)Wada, Yuki*; Enoto, Teruaki*; Nakamura, Yoshitaka*; Morimoto, Takeshi*; Sato, Mitsuteru*; Ushio, Tomoo*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Yonetoku, Daisuke*; Sawano, Tatsuya*; et al.
Journal of Geophysical Research; Atmospheres, 125(4), p.e2019JD031730_1 - e2019JD031730_11, 2020/02
Times Cited Count:19 Percentile:80.8(Meteorology & Atmospheric Sciences)Nara, Yoshitaka*; Kato, Masaji*; Sato, Tsutomu*; Kono, Masanori*; Sato, Toshinori
Proceedings of 5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future (YSRM 2019 and REIF 2019) (USB Flash Drive), 6 Pages, 2019/12
It is important to understand the long-term migration of radionuclides considering carious rock engineering projects such as the geological disposal of radioactive wastes. The network of fractures and pores in a rock mass can play important roles as the pathway of the fluid flow of rock. Usually groundwater contains fine-grained minerals such as clays. It is probable that the accumulation of the fine-grained minerals occurs in a fracture if the groundwater flows in a fracture in a rock. In this study, we have conducted the permeability measurement using water including clays. Specifically, we used a macro-fractured granite as a rock sample, and investigated the change of the permeability under the flow of the water including clays. It was shown that the hydraulic conductivity decreased with elapsed time.
Wada, Yuki*; Enoto, Teruaki*; Nakamura, Yoshitaka*; Furuta, Yoshihiro; Yuasa, Takayuki*; Nakazawa, Kazuhiro*; Morimoto, Takeshi*; Sato, Mitsuteru*; Matsumoto, Takahiro*; Yonetoku, Daisuke*; et al.
Communications Physics (Internet), 2(1), p.67_1 - 67_9, 2019/06
Times Cited Count:41 Percentile:92.22(Physics, Multidisciplinary)Kato, Masaji*; Nara, Yoshitaka*; Okazaki, Yuki*; Kono, Masanori*; Sato, Toshinori; Sato, Tsutomu*; Takahashi, Manabu*
Materials Transactions, 59(9), p.1427 - 1432, 2018/09
Times Cited Count:6 Percentile:34.2(Materials Science, Multidisciplinary)To ensure the safe geological disposal of radioactive waste, it is important to determine the permeability (hydraulic conductivity) of clays. The transient pulse method is suitable for low-permeability materials because it requires a relatively short time to determine their permeability. Upstream pore pressure typically increases in the measurement conducted via the transient pulse method. However, this procedure cannot be used to determine the permeability of clays due to the increase in pore pressure. Therefore, the transient pulse method has never been applied to determine clay permeability. In this study, we applied the transient pulse method to a clay sample to determine its permeability while decreasing the downstream pore pressure.
Nara, Yoshitaka*; Kuwatani, Ryuta*; Kono, Masanori*; Sato, Toshinori; Kashiwaya, Koki*
Zairyo, 67(7), p.730 - 737, 2018/07
Information of confining ability of rock is important for the geological disposal of radioactive wastes. To maintain or improve the confining ability of rocks, it is important to seal pores and cracks. In this study, we investigated the precipitation of minerals on the rock surface. As rock samples, we used Berea sandstone and Toki granite in this study. It was shown that precipitation occurred on the surface of rock specimens kept in calcium hydroxide solution for 1 month if the concentration was high. Specifically, if the concentration of calcium hydroxide solution was higher than 300 mg/l, the precipitation occurred obviously. After keeping rock specimens in calcium hydroxide solution, the weight of the rock samples increased and the concentration of calcium ion decreased by the precipitation. It is considered that the calcium ion in water was used for the precipitation on rock surfaces. Since the precipitation has been recognized for rock surfaces, it is possible to seal pores and cracks in rocks. Therefore, it is also possible to keep or decrease the permeability of rocks by the precipitation of calcium compounds.
Nara, Yoshitaka*; Kato, Masaji*; Niri, Ryuhei*; Kono, Masanori*; Sato, Toshinori; Fukuda, Daisuke*; Sato, Tsutomu*; Takahashi, Manabu*
Pure and Applied Geophysics, 175(3), p.917 - 927, 2018/03
Times Cited Count:12 Percentile:58.02(Geochemistry & Geophysics)Information on the permeability of rock is essential for various geoengineering projects. It is especially important to investigate how fractures and pores influence the physical and transport properties of rock. Infiltration of groundwater through the damage zone fills fractures in granite with fine-grained minerals. However, the permeability of rock possessing a fracture naturally filled with fine-grained mineral grains has yet to be investigated. In this study, the permeabilities of granite samples, including a macro-fracture filled with clay and a mineral vein, are investigated. The permeability of granite with a fine-grained mineral vein agrees well with that of the intact sample, whereas the permeability of granite possessing a macro-fracture filled with clay is lower than that of the macro-fractured sample. The decrease in the permeability is due to the filling of fine-grained minerals and clay in the macro-fracture. It is concluded that the permeability of granite increases due to the existence of the fractures, but decreases upon filling them with fine-grained minerals.
Kato, Masaji*; Nara, Yoshitaka*; Okazaki, Yuki*; Kono, Masanori*; Sato, Toshinori; Sato, Tsutomu*; Takahashi, Manabu*
Zairyo, 67(3), p.318 - 323, 2018/03
To ensure the safe geological disposal of radioactive wastes, it is important to determine the permeability of clays. The transient pulse test is suitable to apply to the low permeability materials, because it takes relatively short term to determine the permeability. Usually we increase the upstream pore pressure in the measurement with the transient pulse test. However, it is impossible to determine the permeability of clay in this procedure because of the increase of pore pressure. Therefore, the transient pulse test has never been applied to the determination of permeability of clays. In this study, we tried to apply the transient pulse test to a clay obtained in Mizunami Underground Research Laboratory to determine the permeability with decreasing the downstream pore pressure. It was clarified that the transient pulse test with decreasing downstream pore pressure is appropriate from the measurements of granite and sandstone. It was shown that the permeability of a clay was determined by the transient pulse test with decreasing the downstream pore pressure, which agreed with the permeability determined from the falling head test. The measurement time of the transient pulse test is much shorter than that of the falling head test. It is concluded that the transient pulse test is appropriate for the determination of the permeability of clays.
Terada, Kentaro*; Sato, Akira*; Ninomiya, Kazuhiko*; Kawashima, Yoshitaka*; Shimomura, Koichiro*; Yoshida, Go*; Kawai, Yosuke*; Osawa, Takahito; Tachibana, Shogo*
Scientific Reports (Internet), 7(1), p.15478_1 - 15478_6, 2017/11
Times Cited Count:15 Percentile:64.85(Multidisciplinary Sciences)Electron- or X-ray-induced characteristic X-ray analysis has been widely used to determine chemical compositions of materials in vast research fields. In recent years, analysis of characteristic X-rays from muonic atoms, in which a muon is captured, has attracted attention because both a muon beam and a muon-induced characteristic X-ray have high transmission abilities. Here we report the first non-destructive elemental analysis of a carbonaceous chondrite using one of the world-leading intense direct current muon beam source (MuSIC; MUon Science Innovative Channel). We successfully detected characteristic muonic X-rays of Mg, Si, Fe, O, S and C from Jbilet Winselwan CM chondrite, of which carbon content is about 2 wt percent, and the obtained elemental abundance pattern was consistent with that of CM chondrites.
Sato, Wataru*; Komatsuda, Sayaka*; Osa, Akihiko; Sato, Tetsuya; Okubo, Yoshitaka*
Hyperfine Interactions, 237(1), p.113_1 - 113_6, 2016/12
Times Cited Count:2 Percentile:62.26The magnetic hyperfine field and electric field gradient at theCd(
Cd) and
Cd(
In) probe nuclei introduced in a perovskite manganese oxide
(
250 K) were measured for the study of the local magnetism and structure by means of time-differential perturbed angular correlation spectroscopy. In the ferromagnetic phase at 77 K, a very slight supertransferred magnetic hyperfine field (SMHF) (
0.014 T) combined with a well-defined electric field gradient was observed at the nonmagnetic
Cd nucleus on the La/Ca A site. This observation suggests that the large magnetic hyperfine field (
= 6.9 T) measured, in our previous work, at the
Ce probe nucleus on the A site originates from the contribution of a 4
spin oriented by the SMHF from adjacent Mn ions.
Kato, Masaji*; Nara, Yoshitaka*; Fukuda, Daisuke*; Kono, Masanori*; Sato, Toshinori; Sato, Tsutomu*; Takahashi, Manabu*
Zairyo, 65(7), p.489 - 495, 2016/07
Rock masses serve a vital function as natural barriers for geological disposal of radioactive waste; therefore, information on rock permeability is essential. Highly accurate measurement of permeability requires understanding of how temperature changes in the surrounding environment influence measurement results. We performed permeability measurement under conditions with dramatic changes of temperature in the surrounding environment to investigate the influence of such changes on the experimental results. Measurement of permeability with no temperature change was also conducted as reference. All measurements were conducted using the transient pulse method, and the sample material used was Toki granite obtained from Gifu Prefecture in central Japan. We found that temperature changes in the surrounding environment remarkably affected the pressure in reservoirs upstream and downstream, the pressure difference between them, and the confining pressure; all increased when temperature increased for our experimental system. Notably, pressure difference was affected immediately. This difference directly relates to estimation of permeability.
Sato, Yuki*; Abe, Yosuke; Abe, Hiroaki*; Matsukawa, Yoshitaka*; Kano, Sho*; Onuki, Somei*; Hashimoto, Naoyuki*
Philosophical Magazine, 96(21), p.2219 - 2242, 2016/06
Times Cited Count:12 Percentile:52.7(Materials Science, Multidisciplinary)We performed in situ observation of one-dimensional (1D) migration of self-interstitial atom (SIA) clusters in iron under electron irradiation at 110-300 K using high-voltage electron microscopy. Most 1D migration was stepwise positional changes of SIA clusters at irregular time intervals at all temperatures. The frequency of 1D migration did not depend on the irradiation temperature. It was directly proportional to the damage rate, suggesting that 1D migration was induced by electron irradiation. In contrast, the 1D migration distance depended on the temperature: distribution of the distance ranged over 100 nm above 250 K, decreased steeply between 250 and 150 K and was less than 20 nm below 150 K. The distance was independent of the damage rate at all temperatures. Next, we examined fluctuation in the interaction energy between an SIA cluster and vacancies of random distribution at concentrations -
, using molecular statics simulations. The fluctuation was found to trap SIA clusters of 4 nm diameter at vacancy concentrations higher than
. We proposed that 1D migration was interrupted by impurity atoms at temperatures higher than 250 K, and by vacancies accumulated at high concentration under electron irradiation at low temperatures where vacancies are not thermally mobile.
Oe, Kazuhiro*; Attallah, M. F.*; Asai, Masato; Goto, Naoya*; Gupta, N. S.*; Haba, Hiromitsu*; Huang, M.*; Kanaya, Jumpei*; Kaneya, Yusuke*; Kasamatsu, Yoshitaka*; et al.
Journal of Radioanalytical and Nuclear Chemistry, 303(2), p.1317 - 1320, 2015/02
Times Cited Count:8 Percentile:61.79(Chemistry, Analytical)A new technique for continuous dissolution of nuclear reaction products transported by a gas-jet system was developed for superheavy element (SHE) chemistry. In this technique, a hydrophobic membrane is utilized to separate an aqueous phase from the gas phase. With this technique, the dissolution efficiencies of short-lived radionuclides of Mo and
W were measured. Yields of more than 80% were observed for short-lived radionuclides at aqueous-phase flow rates of 0.1-0.4 mL/s. The gas flow-rate had no influence on the dissolution efficiency within the studied flow range of 1.0-2.0 L/min. These results show that this technique is applicable for on-line chemical studies of SHEs in the liquid phase.
Nabeshima, Kunihiko; Aizawa, Kosuke; Chikazawa, Yoshitaka; Sato, Daisuke*; Ikari, Risako*
Proceedings of 2014 International Congress on the Advances in Nuclear Power Plants (ICAPP 2014) (CD-ROM), p.600 - 606, 2014/04
One of the advantages in features of Japan Sodium-cooled Fast Reactor (JSFR) is that it's free from high-capacity power load or quick activation of emergency power supply because Decay Heat Removal System (DHRS) adopted natural circulation. However, the Emergency Power Supply System of JSFR is reconsidered to improve the reliability for station blackout (SBO) caused by extreme external events after the nuclear accident at Fukushima. A non-class 1E GTG are added for practically elimination of Loss of Heat Removal System (LOHRS), and alternative power supply system composed of small air-cooled DG and lead-acid batteries is newly introduced to maintain class 1E equipment against the long-term station blackout (SBO).
Toyoshima, Atsushi; Li, Z.*; Asai, Masato; Sato, Nozomi; Sato, Tetsuya; Kikuchi, Takahiro; Kaneya, Yusuke; Kitatsuji, Yoshihiro; Tsukada, Kazuaki; Nagame, Yuichiro; et al.
Inorganic Chemistry, 52(21), p.12311 - 12313, 2013/11
Times Cited Count:5 Percentile:24.03(Chemistry, Inorganic & Nuclear)The reduction behavior of mendelevium (Md) was studied using a flow electrolytic chromatography apparatus. By applying appropriate potentials on the chromatography column, the more stable Md is reduced to Md
. The reduction potential of the Md
+ e
Md
couple was determined to be -0.16
0.05 V vs. a normal hydrogen electrode.
Murakami, Masashi*; Goto, Shinichi*; Murayama, Hirofumi*; Kojima, Takayuki*; Kudo, Hisaaki*; Kaji, Daiya*; Morimoto, Koji*; Haba, Hiromitsu*; Kudo, Yuki*; Sumita, Takayuki*; et al.
Physical Review C, 88(2), p.024618_1 - 024618_8, 2013/08
Times Cited Count:14 Percentile:67.19(Physics, Nuclear)Production cross sections of Rf isotopes in the Cm +
O reaction were measured at the beam energy range of 88.2 to 101.3 MeV by use of a gas-filled recoil ion separator. The excitation functions of
Rf,
Rf, and
Rf were obtained together with those of spontaneously fissioning nuclides which have few-second half-lives and have been assigned to
Rf and a longer-lived state of
Rf. The excitation function of few-second spontaneously fissioning nuclide exhibited the maximum cross section at the
O beam energy of 94.8 MeV. The shape of the excitation function was almost the same as that of
Rf, whereas it was quite different from those of
Rf and
Rf. A few-second spontaneously fissioning nuclide previously reported as
Rf and
Rf observed in
Cm +
O reaction was identified as
Rf.
Miyauchi, Hideaki; Yoshitomi, Hiroshi; Sato, Yoshitaka; Takahashi, Fumiaki; Tachibana, Haruo; Kobayashi, Ikuo*; Suzuki, Akifumi*
Nihon Hoshasen Anzen Kanri Gakkai-Shi, 12(1), p.41 - 45, 2013/07
In the Japan Atomic Energy Agency (JAEA), exposures to fingertips can be significant in radiological decontamination at the facilities with mixture fields of beta and (X) rays. The radiation doses to fingertips have been measured by ring type dosemeters equipped with thermoluminescence dosemeters (TLD) in JAEA. We applied small Optically Stimulated Luminescence (OSL) elements to the ring type dosemeter, which has the advantages in the use for long term and repeating in dose measurements comparing to the TLDs. In this report, we introduce the outline and the dose evaluation method of the new ring type dosimeter which we applied.
Morita, Kosuke*; Morimoto, Koji*; Kaji, Daiya*; Haba, Hiromitsu*; Ozeki, Kazutaka*; Kudo, Yuki*; Sumita, Takayuki*; Wakabayashi, Yasuo*; Yoneda, Akira*; Tanaka, Kengo*; et al.
Journal of the Physical Society of Japan, 81(10), p.103201_1 - 103201_4, 2012/10
Times Cited Count:161 Percentile:97.31(Physics, Multidisciplinary)An isotope of the 113th element, 113, was produced in a nuclear reaction with a
Zn beam on a
Bi target. We observed six consecutive
decays following the implantation of a heavy particle in nearly the same position in the semiconductor detector, in extremely low background condition. The fifth and sixth decays are fully consistent with the sequential decays of
Db and
Lr both in decay energies and decay times. This indicates that the present decay chain consisted of
113,
Rg (Z = 111),
Mt (Z = 109),
Bh (Z = 107),
Db (Z = 105), and
Lr (Z = 103) with firm connections. This result, together with previously reported results from 2004 and 2007, conclusively leads the unambiguous production and identification of the isotope
113, of the 113th element.
Kamei, Gento; Honda, Akira; Oda, Chie; Hirano, Fumio; Ichige, Satoru; Kurimoto, Yoshitaka; Hoshino, Seiichi; Akagi, Yosuke; Sato, Nobuyuki; Takahashi, Kuniaki; et al.
JAEA-Research 2012-010, 80 Pages, 2012/06
Based on Japanese governmental policy and general scheme, research and development of geological disposal technology for TRU waste has been proceeding to improve reliability of the safety assessment of the co-locational disposal of TRU waste and of HLW, to expand the basement of generic safety assessment, and to develop the alternative technology to cope with the broad geologic environment of Japan. Japan Atomic Energy Agency is dealing with the assignments in the governmental generic scheme. We report here the progress of the studies at the end of H22 (2010) Japanese fiscal year and their products during the last 5 years. These include (1) evaluation of long-term mechanical stability in the near-field including development of a creep mode of rock and analyses of mechanical behavior of TRU waste repository, (2) performance assessment of the disposal system including cementitious material alteration, bentonite and hostrock alteration with alkaline solution and nitrate effect, and (3) alternative technology development including decomposition of nitrate.