Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Thermally altered subsurface material of asteroid (162173) Ryugu

Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.

Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03

 Times Cited Count:30 Percentile:96.87(Astronomy & Astrophysics)

Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300 $$^{circ}$$C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200 $$^{circ}$$C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.

Journal Articles

The Surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy

Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Arai, Takehiko*; Nakauchi, Yusuke*; Nakamura, Tomoki*; Matsuoka, Moe*; et al.

Science, 364(6437), p.272 - 275, 2019/04

 Times Cited Count:233 Percentile:99.74(Multidisciplinary Sciences)

The near-Earth asteroid 162173 Ryugu, the target of Hayabusa2 sample return mission, is believed to be a primitive carbonaceous object. The Near Infrared Spectrometer (NIRS3) on Hayabusa2 acquired reflectance spectra of Ryugu's surface to provide direct measurements of the surface composition and geological context for the returned samples. A weak, narrow absorption feature centered at 2.72 micron was detected across the entire observed surface, indicating that hydroxyl (OH)-bearing minerals are ubiquitous there. The intensity of the OH feature and low albedo are similar to thermally- and/or shock-metamorphosed carbonaceous chondrite meteorites. There are few variations in the OH-band position, consistent with Ryugu being a compositionally homogeneous rubble-pile object generated from impact fragments of an undifferentiated aqueously altered parent body.

Journal Articles

Segmentation of granite and single fracture through microfocus X-ray CT and its application

Ishikawa, Tomohiro*; Yasuhara, Hideaki*; Sawada, Atsushi; Kishida, Kiyoshi*

Dai-50-Kai Jiban Kogaku Kenkyu Happyokai Rombunshu, p.515 - 516, 2015/06

no abstracts in English

Journal Articles

Measurements of fracture aperture in granite core using microfocus X-ray CT and fluid flow simulation

Kishida, Kiyoshi*; Ishikawa, Tomohiro*; Higo, Yosuke*; Sawada, Atsushi; Yasuhara, Hideaki*

Proceedings of 49th US Rock Mechanics/Geomechanics Symposium (CD-ROM), 6 Pages, 2015/06

In order to estimate the changes in fracture aperture under various long-term confining and thermal conditions, measurements of the fracture aperture are conducted using microfocus X-ray CT. Through the imaging data, the altitude of the fracture surface and the contact points are evaluated, and contact ratios for the fracture, the JRC and the aperture distribution are estimated. On the other hand, measurements are also conducted using a laser scan profile sensor, and some parameters are estimated. In comparing these parameters, the validity of the X-ray CT data and an analysis of the data will be discussed. In addition, a fracture flow simulation will be conducted using the altitude and aperture data obtained by the microfocus X-ray CT.

Journal Articles

Evidence of electronic polarization of the As ion in the superconducting phase of F-doped LaFeAsO

Kim, J.*; Fujiwara, Akihiko*; Sawada, Tomohiro*; Kim, Y.*; Sugimoto, Kunihisa*; Kato, Kenichi*; Tanaka, Hiroshi*; Ishikado, Motoyuki*; Shamoto, Shinichi; Takata, Masaki*

IUCrJ, 1(3), p.155 - 159, 2014/05

 Times Cited Count:2 Percentile:21.58(Chemistry, Multidisciplinary)

Using a charge density analysis based on synchrotron radiation X-ray powder diffraction data, we found that the charge carriers only accumulated in the iron layer of the superconducting phase of LaFeAsO$$_{1-x}$$F$$_{x}$$ at low temperatures. Analysis of the electrostatic potential distribution revealed the concerted enhancement of the electronic polarization of the As ions and the carrier redistribution.

Oral presentation

Spectral characteristics of asteroid (162173) Ryugu with Hayabusa2 NIRS3

Takir, D.*; Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Arai, Takehiko*; Nakauchi, Yusuke*; Nakamura, Tomoki*; et al.

no journal, , 

JAXA spacecraft and sample return mission Hayabusa2 has arrived at the near-Earth asteroid 162173 Ryugu, which is classified a primitive carbonaceous object. Here we report recent results of near-infrared spectrometer (NIRS3) on the Hayabusa2 spacecraft. The observations provide direct measurements of the surface composition of Ryugu and context for the returned samples. NIRS3 has detected a weak and narrow absorption feature centered at 2.72 micrometer across entire observed surface. This absorption feature is attributed to the presence of OH-bearing minerals. The NIRS3 observations also revealed that Ryugu is the darkest object to be observed up-close by a visiting spacecraft. The intensity of the OH feature and low albedo are consistent with thermally-and/or shock-metamorphosed, and/or carbon-rich space-weathered primitive and hydrated carbonaceous chondrites.

6 (Records 1-6 displayed on this page)
  • 1