Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Wada, Yuki*; Kamogawa, Masashi*; Kubo, Mamoru*; Enoto, Teruaki*; Hayashi, Shugo*; Sawano, Tatsuya*; Yonetoku, Daisuke*; Tsuchiya, Harufumi
Journal of Geophysical Research; Atmospheres, 128(21), p.e2023JD039354_1 - e2023JD039354_20, 2023/11
Times Cited Count:1 Percentile:17.45(Meteorology & Atmospheric Sciences)Wada, Yuki*; Matsumoto, Takahiro*; Enoto, Teruaki*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Furuta, Yoshihiro*; Yonetoku, Daisuke*; Sawano, Tatsuya*; Okada, Go*; Nanto, Hidehito*; et al.
Physical Review Research (Internet), 3(4), p.043117_1 - 043117_31, 2021/12
Wada, Yuki*; Enoto, Teruaki*; Kubo, Mamoru*; Nakazawa, Kazuhiro*; Shinoda, Taro*; Yonetoku, Daisuke*; Sawano, Tatsuya*; Yuasa, Takayuki*; Ushio, Tomoo*; Sato, Yosuke*; et al.
Geophysical Research Letters, 48(7), 11 Pages, 2021/04
Times Cited Count:20 Percentile:82.04(Geosciences, Multidisciplinary)During three winter seasons from November 2016 to March 2019, 11 gamma-ray glows were detected at a single observation site of our ground-based gamma-ray monitoring network in Kanazawa, Japan. These events are analyzed with observations of an X-band radar network, a ceilometer, a disdrometer, and a weather monitor. All the detected glows were connected to convective high-reflectivity regions of more than 35 dBZ, developed up to an altitude of 2 km. They were also accompanied by heavy precipitation of graupels. Therefore, graupels in the lower layer of thunderclouds that correspond to high-reflectivity regions can form strong electric fields producing gamma-ray glows. Also, these events are compared with a limited sample of nondetection cases, but no significant differences in meteorological conditions were found between detection and nondetection cases in the present study.
Wada, Yuki*; Enoto, Teruaki*; Nakamura, Yoshitaka*; Morimoto, Takeshi*; Sato, Mitsuteru*; Ushio, Tomoo*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Yonetoku, Daisuke*; Sawano, Tatsuya*; et al.
Journal of Geophysical Research; Atmospheres, 125(4), p.e2019JD031730_1 - e2019JD031730_11, 2020/02
Times Cited Count:25 Percentile:77.68(Meteorology & Atmospheric Sciences)Wada, Yuki*; Enoto, Teruaki*; Nakamura, Yoshitaka*; Furuta, Yoshihiro; Yuasa, Takayuki*; Nakazawa, Kazuhiro*; Morimoto, Takeshi*; Sato, Mitsuteru*; Matsumoto, Takahiro*; Yonetoku, Daisuke*; et al.
Communications Physics (Internet), 2(1), p.67_1 - 67_9, 2019/06
Times Cited Count:55 Percentile:92.27(Physics, Multidisciplinary)Harada, Masahide; Parker, J. D.*; Sawano, Tatsuya*; Kubo, Hidetoshi*; Tanimori, Toru*; Shinohara, Takenao; Maekawa, Fujio; Sakai, Kenji
Physics Procedia, 43, p.314 - 322, 2013/00
Times Cited Count:1 Percentile:52.06(Physics, Applied)The purposes of this study are to perform Neutron Resonance Absorption NRA test experiments using the Micro Pixel Chamber, and to confirm its quantitativity. The detector was located at 14.5 m from the moderator in the experimental room of NOBORU. The samples, consisting of thin Tantalum (Ta) foils, with thicknesses of 5, 10, 20 and 100 m, were placed individually at 15 cm upstream from the detector. In the experiment, the transmission spectra with the Ta samples and no sample were obtained. Background components were not so small in these measurements. From the neutron transport simulation, it was surmised that the origin of this background was due to scattering of neutrons in the experimental room. Therefore, the assumed background components were subtracted from the measurement data. Finally, it was found that the difference between the measurement data and the nuclear data was within about 7%.
Sonoda, Shinya*; Nabetani, Akira*; Kimura, Hiroyuki*; Kabuki, Shigeto*; Takada, Atsushi*; Kubo, Hidetoshi*; Kimura, Shotaro*; Sawano, Tatsuya*; Tanimori, Toru*; Matsuoka, Yoshihiro*; et al.
no journal, ,
We have developed the ETCC for new medical imaging device and succeeded in imaging the some medical imaging reagents. Thus, this detector is thought promising for a new medical imaging. The F-18 point-like and rod-like phantoms are measured with new ETCC, and the imaging performance was estimated. In addition, measurement of Tc-95m which is produced by Japan Atomic Energy Agency was performed.
Sonoda, Shinya*; Nabetani, Akira*; Kimura, Hiroyuki*; Kabuki, Shigeto*; Takada, Atsushi*; Kubo, Hidetoshi*; Komura, Shotaro*; Sawano, Tatsuya*; Tanimori, Toru*; Matsuoka, Yoshihiro*; et al.
no journal, ,
We present the performance results using this new ETCC such as the imaging test using F-18 in point-like and rod-like phantoms with varying the intense of radiation. In addition, the measurementof Tc-95m which is produced by Japan Atomic Energy Agency was performed. Tc-95m emitsthe -rays with the energy, 204, 583, and 835 keV, and then an image with multi-energies is examined. The position resolution achieves less than about 8 degrees from 10 degrees at 511 keV by this improvement. Further improvement of the angular resolution (position resolution) will be presented until 2015 spring. Also, we are developing the next ETCC by increasing the thickness of the scintillator from 1 rad. to 2 rad. and the gas pressure from 1 atm to 3 atm which improvethe detection efficiency by a factor of
5 at 511 keV. By these improvements, the imaging time of mouse is expected to be reduced from several hours with to
20 minutes for lots of kinds of RIs with the energy band from 0.1-2 MeV.
Harada, Masahide; Parker, J.*; Sawano, Tatsuya*; Kubo, Hidetoshi*; Tanimori, Toru*; Shinohara, Takenao; Maekawa, Fujio
no journal, ,
no abstracts in English
Harada, Masahide; Parker, J.*; Sawano, Tatsuya*; Kubo, Hidetoshi*; Tanimori, Toru*; Shinohara, Takenao; Maekawa, Fujio
no journal, ,
no abstracts in English
Sonoda, Shinya*; Nabeya, Akira*; Kimura, Hiroyuki*; Kabuki, Shigeto*; Takada, Atsushi*; Kubo, Hidetoshi*; Komura, Shotaro*; Tanimori, Toru*; Matsuoka, Yoshihiro*; Mizumura, Yoshitaka*; et al.
no journal, ,
SPECT and PET are widely used for medical imaging. However, radio isotopes available for SPECT and PET are limited. Under these circumstances, it is expected the appearance of the new imaging detector which can measure more various kinds of
-ray sources in order to develop new biomarkers using new radio isotopes. We set out to contribute to medical imaging technology by developing Electron-Tracking Compton Camera (ETCC) which can measure the various radioactive medicine.
Harada, Masahide; Parker, J.*; Sawano, Tatsuya*; Kubo, Hidetoshi*; Tanimori, Toru*; Shinohara, Takenao; Maekawa, Fujio
no journal, ,