Refine your search:     
Report No.
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Progress of the high current Prototype Accelerator for IFMIF/EVEDA

Okumura, Yoshikazu; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; Gobin, R.*; Harrault, F.*; Heidinger, R.*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.203 - 205, 2015/09

Under the framework of Broader Approach (BA) agreement between Japan and Euratom, IFMIF/EVEDA project was launched in 2007 to validate the key technologies to realize IFMIF. The most crucial technology to realize IFMIF is two set of linear accelerator each producing 125mA/CW deuterium ion beams up to 40MeV. The prototype accelerator, whose target is 125mA/CW deuterium ion beam acceleration up to 9MeV, is being developed in International Fusion Research Energy Center (IFERC) in Rokkasho, Japan. The injector developed in CEA Saclay was delivered in Rokkasho in 2014, and is under commissioning. Up to now, 100keV/120mA/CW hydrogen ion beams and 100keV/90mA/CW duty deuterium ion beams are successfully produced with a low beam emittance of 0.21 $$pi$$.mm.mrad (rms, normalized). Delivery of RFQ components will start in 2015, followed by the installation of RF power supplies in 2015.

Oral presentation

LIPAc, the 125 mA / 9 MeV / CW deuteron IFMIF's prototype accelerator; What lessons have we learnt from LEDA ?

Scantamburlo, F.*; Knaster, J.*; Okumura, Yoshikazu; Kasugai, Atsushi; Shidara, Hiroyuki*; Chauvin, N.*; Gobin, R.*; Nghiem, P. A. P.*

no journal, , 

The Engineering Validation and Engineering Design Activities (EVEDA) phase of IFMIF aims at running a 9 MeV / 125 mA / CW deuteron accelerator to demonstrate the feasibility of IFMIF's 40 MeV / 125 mA / CW accelerator with components mainly designed and constructed in European labs. LEDA was operated successfully in 1999-2001 as a 6.7 MeV / 100 mA / CW proton accelerator with high availability. The present paper assesses the experience gained in LEDA and explains how LIPAc, the IFMIF prototype accelerator, is inheriting its role of breaking through technological boundaries.

2 (Records 1-2 displayed on this page)
  • 1