Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Organ doses of the fetus from external environmental exposures

Petoussi-Henss, N.*; Satoh, Daiki; Schlattl, H.*; Zankl, M.*; Spielman, V.*

Radiation and Environmental Biophysics, 60(1), p.93 - 113, 2021/03

 Times Cited Count:2 Percentile:26.61(Biology)

In this study, the nuclide-specific organ dose coefficients of pregnant female and its fetus for environmental external exposures have been evaluated. The radiation sources were uniformly put in the soil at the depth of 0.5 g cm$$^{-2}$$ or in the atmosphere. The environmental radiation fields for the soil contamination were analyzed by using the radiation transport code PHITS, and the fields for the air submersion were taken from the existing data analyzed by the YURI code. The numerical models of the pregnant female and its fetus were put in the environmental radiation fields, and the radiation transport simulations were performed using the EGS code to obtain the organ absorbed doses. From the simulation results, it was found that the radionuclide-specific uterus doses of the pregnant female agreed with the total body doses of the fetus within 6%, except for some radionuclides which emit the low-energy photons below 50 keV. Using the organ dose coefficients evaluated in the present study, the doses of the pregnant female and its fetus can be estimated easily from the data of activity concentration of the radionuclides distributed in the environment.

Journal Articles

Dose coefficients for external exposures to environmental sources

Petoussi-Henss, N.*; Satoh, Daiki; Endo, Akira; Eckerman, K. F.*; Bolch, W. E.*; Hunt, J.*; Jansen, J. T. M.*; Kim, C. H.*; Lee, C.*; Saito, Kimiaki; et al.

Annals of the ICRP, 49(2), p.11 - 145, 2020/10

The age-dependent dose coefficients of organ equivalent doses and effective doses for the member of the public are required to estimate the external dose of the public exposed to radiations from radionuclides in the environment. For this purpose, a computational method to simulate the radiation fields of environmental photon and electron sources in the air, soil, and water has been developed using a particle transport code PHITS in the JAEA, and the organ equivalent doses have been calculated using the human models of newborns, 1-year-old, 5-years-old, 10-years-old, and 15-years-old children, and adults male and female provided by the ICRP. In addition, the nuclide-specific effective dose coefficients have been derived using the skin-dose data and nuclide-decay data provided by the Hanyang University and ICRP, respectively. The data of the dose coefficients are available for dose estimations of not only the Fukushima Daiichi nuclear accident but radiological emergencies which radionuclides are released to the environment.

Journal Articles

Overview of the ICRP/ICRU adult reference computational phantoms and dose conversion coefficients for external idealised exposures

Endo, Akira; Petoussi-Henss, N.*; Zankl, M.*; Bolch, W. E.*; Eckerman, K. F.*; Hertel, N. E.*; Hunt, J. G.*; Pelliccioni, M.*; Schlattl, H.*; Menzel, H.-G.*

Radiation Protection Dosimetry, 161(1-4), p.11 - 16, 2014/10

 Times Cited Count:2 Percentile:16.44(Environmental Sciences)

In 2007, the International Commission on Radiological Protection (ICRP) revised its fundamental recommendations on radiation protection in ICRP Publication 103 (ICRP103). The recommendations updated the radiation and tissue weighting factors in the radiological protection quantities, equivalent and effective doses, and adopted reference computational phantoms for the calculation of organ doses. These revisions required calculations of conversion coefficients for the protection quantities. The sets of conversion coefficients for external exposures were compiled by the Task Group DOCAL of ICRP, and published in ICRP116. The presentation reviews the conversion coefficients for external radiations calculated using the reference computational phantoms. The conversion coefficients are compared with the existing values given in ICRP74. Contributing factors for any differences between these sets of conversion coefficients as well as the impact for radiation monitoring practice are discussed.

Journal Articles

ICRP Publication 116; The First ICRP/ICRU application of the male and female adult reference computational phantoms

Petoussi-Henss, N.*; Bolch, W. E.*; Eckerman, K. F.*; Endo, Akira; Hertel, N.*; Hunt, J.*; Menzel, H. G.*; Pelliccioni, M.*; Schlattl, H.*; Zankl, M.*

Physics in Medicine & Biology, 59(18), p.5209 - 5224, 2014/09

 Times Cited Count:13 Percentile:42.93(Engineering, Biomedical)

ICRP Publication 116 (ICRP116) on "Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures", provides fluence-to-dose conversion coefficients for organ absorbed doses and effective dose for external exposures. ICRP116 supersedes the ICRP74, expanding also the particle types and energy ranges considered. The coefficients were calculated using the ICRP/ICRU computational phantoms representing the Reference Adult Male and Reference Adult Female, together with Monte Carlo codes simulating the radiation transport in the body. Idealised whole-body irradiation from unidirectional and rotational parallel beams as well as isotropic irradiation was considered. Comparison of the effective doses with operational quantities revealed that the latter quantities continue to provide a good approximation of effective dose for photons, neutrons and electrons for the conventional energy ranges considered previously, but not at the higher energies of ICRP116.

Journal Articles

Effective dose conversion coefficients for radionuclides exponentially distributed in the ground

Saito, Kimiaki; Ishigure, Nobuhito*; Petoussi-Henss, N.*; Schlattl, H.*

Radiation and Environmental Biophysics, 51(4), p.411 - 423, 2012/11

 Times Cited Count:24 Percentile:69.78(Biology)

Oral presentation

Organ doses from environmental exposures calculated using the ICRP reference male and reference female voxel phantoms

Petoussi-Henss, N.*; Schlattl, H.*; Zankl, M.*; Becker, J.*; Saito, Kimiaki; Endo, Akira

no journal, , 

no abstracts in English

Oral presentation

Effective dose conversion coefficients for radionuclides exponentially distributed in the ground

Saito, Kimiaki; Ishigure, Nobuhito*; Petoussi-Henss, N.*; Schlattl, H.*

no journal, , 

no abstracts in English

Oral presentation

ICRP activities on dose coefficients for members of the public from external exposures to environmental sources

Petoussi-Henss, N.*; Bellamy, M.*; Bolch, W. E.*; Eckerman, K. F.*; Endo, Akira; Hertel, N.*; Hunt, J.*; Jansen, J.*; Kim, C. H.*; Lee, C.*; et al.

no journal, , 

A Task Group of the Committee 2 of the International Commission on Radiological Protection, ICRP, is currently working on the estimation of effective dose and organ dose coefficients for members of the public due to environmental external exposures to photons and electrons. The JAEA is contributing to the Task Group by calculating the doses with the radiation transport code PHITS which has been developed in the JAEA. Those calculations were performed using the ICRP adult and pediatric male and female reference computational phantoms for the environmental radiation sources in air, soil, and water. The obtained results of effective dose and organ dose are normalized to radioactivity concentration, ambient dose equivalent, and air kerma, and summarize in a database of the dose coefficients. Furthermore, dose coefficients for radionuclides in the environment are also evaluated by using the most recent nuclear decay data.

8 (Records 1-8 displayed on this page)
  • 1