Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The Application of radiochronometry during the 4th collaborative materials exercise of the nuclear forensics international technical working group (ITWG)

Kristo, M. J.*; Williams, R.*; Gaffney, A. M.*; Kayzar-Boggs, T. M.*; Schorzman, K. C.*; Lagerkvist, P.*; Vesterlund, A.*; Rameb$"a$ck, H.*; Nelwamondo, A. N.*; Kotze, D.*; et al.

Journal of Radioanalytical and Nuclear Chemistry, 315(2), p.425 - 434, 2018/02

 Times Cited Count:12 Percentile:82.06(Chemistry, Analytical)

In a recent international exercise, 10 international nuclear forensics laboratories successfully performed radiochronometry on three low enriched uranium oxide samples, providing 12 analytical results using three different parent-daughter pairs serving as independent chronometers. The vast majority of the results were consistent with one another and consistent with the known processing history of the materials. In general, for these particular samples, mass spectrometry gave more accurate and more precise analytical results than decay counting measurements. In addition, the concordance of the $$^{235}$$U-$$^{231}$$Pa and $$^{234}$$U-$$^{230}$$Th chronometers confirmed the validity of the age dating assumptions, increasing confidence in the resulting conclusions.

Journal Articles

Round-robin $$^{230}$$Th-$$^{234}$$U age dating of bulk uranium for nuclear forensics

Gaffney, A.*; Hubert, A.*; Kinman, W. S.*; Magara, Masaaki; Okubo, Ayako; Pointurier, F.*; Schorzman, K. C.*; Steiner, R. E.*; Williams, R. W.*

Journal of Radioanalytical and Nuclear Chemistry, 307(3), p.2055 - 2060, 2016/03

 Times Cited Count:21 Percentile:90.01(Chemistry, Analytical)

In and inter-laboratory measurement comparison study, four laboratories (LLNL, LANL, CEA, JAEA) determined $$^{230}$$Th-$$^{234}$$U model ages of uranium certified reference material NBL U050 using isotope dilution mass spectrometry. The model dates determined by the participating laboratories range from 9 March 1956 to 19 October 1957, and are indistinguishable given the associated measurement uncertainties. These model ages are concordant with to slightly older than the known production age of NBL U050, indicating unsufficient purification of U050.

2 (Records 1-2 displayed on this page)
  • 1