Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Computational fluid dynamic analysis of core bypass flow phenomena in a prismatic VHTR

Sato, Hiroyuki; Johnson, R.*; Schultz, R.*

Annals of Nuclear Energy, 37(9), p.1172 - 1185, 2010/09

 Times Cited Count:39 Percentile:94.03(Nuclear Science & Technology)

3D CFD calculations of a typical prismatic VHTR are conducted to better understand bypass flow phenomena and establish an evaluation method for the reactor core using the commercial CFD code FLUENT. Parametric calculations changing several factors in a one-twelfth sector of a fuel column are performed. The simulations show the impact of each factor on bypass flow and the resulting flow and temperature distributions in the prismatic core. It is shown that bypass flow provides a significant cooling effect on the prismatic block and that the maximum fuel and coolant channel outlet temperatures increase with an increase in gap-width. Also, the presence of bypass flow causes a large lateral temperature gradient in the block and also dramatically increases the variation in coolant channel outlet temperatures for a given block that may have repercussions on the structural integrity of the graphite, the neutronics and the potential for hot streaking and hot spots occurring in the lower plenum.

Journal Articles

Progress in the ITER physics basis, 4; Power and particle control

Loarte, A.*; Lipschultz, B.*; Kukushkin, A. S.*; Matthews, G. F.*; Stangeby, P. C.*; Asakura, Nobuyuki; Counsell, G. F.*; Federici, G.*; Kallenbach, A.*; Krieger, K.*; et al.

Nuclear Fusion, 47(6), p.S203 - S263, 2007/06

 Times Cited Count:726 Percentile:96.49(Physics, Fluids & Plasmas)

Progress, since the ITER Physics Basis publication (1999), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Significant progress in experiment area: energy and particle transport, the interaction of plasmas with the main chamber material elements, ELM energy deposition on material elements and the transport mechanism, the physics of plasma detachment and neutral dynamics, the erosion of low and high Z materials, their transport to the core plasma and their migration at the plasma edge, retention of tritium in fusion devices and removal methods. This progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma-materials interaction. The implications for the expected performance in ITER and the lifetime of the plasma facing materials are discussed.

Journal Articles

Plasma-surface interaction, scrape-off layer and divertor physics; Implications for ITER

Lipschultz, B.*; Asakura, Nobuyuki; Bonnin, X.*; Coster, D. P.*; Counsell, G.*; Doerner, R.*; Dux, R.*; Federici, G.*; Fenstermacher, M. E.*; Fundamenski, W.*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

The work of the ITPA SOL/divertor group is reviewed. The high-n nature of ELMs has been elucidated and new measurements have determined that they carry 10-20% of the ELM energy to the far SOL with implications for ITER limiters and the upper divertor. Analysis of ELM measurements imply that the ELM continuously loses energy as it travels across the SOL. The prediction of ITER divertor disruption power loads have been reduced as a result of finding that the divertor footprint broadens during the thermal quench and that the plasma can lose up to 80% of its thermal energy before the thermal quench (not for VDEs or ITBs). Disruption mitigation through massive gas puffing has been successful at reducing divertor heat loads but estimates of the effect on the main chamber walls indicate 10s of kG of Be would be melted/mitigation. Long-pulse studies have shown that the fraction of injected gas that can be recovered after a discharge decreases with discharge length. The use of mixed materials gives rise to a number of potential processes.

Journal Articles

Progress in physics basis and its impact on ITER

Shimada, Michiya; Campbell, D.*; Stambaugh, R.*; Polevoi, A. R.*; Mukhovatov, V.*; Asakura, Nobuyuki; Costley, A. E.*; Donn$'e$, A. J. H.*; Doyle, E. J.*; Federici, G.*; et al.

Proceedings of 20th IAEA Fusion Energy Conference (FEC 2004) (CD-ROM), 8 Pages, 2004/11

This paper summarises recent progress in the physics basis and its impact on the expected performance of ITER. Significant progress has been made in many outstanding issues and in the development of hybrid and steady state operation scenarios, leading to increased confidence of achieving ITER's goals. Experiments show that tailoring the current profile can improve confinement over the standard H-mode and allow an increase in beta up to the no-wall limit at safety factors $$sim$$ 4. Extrapolation to ITER suggests that at the reduced plasma current of $$sim$$ 12MA, high Q $$>$$ 10 and long pulse ($$>$$1000 s) operation is possible with benign ELMs. Analysis of disruption scenarios has been performed based on guidelines on current quench rates and halo currents, derived from the experimental database. With conservative assumptions, estimated electromagnetic forces on the in-vessel components are below the design target values, confirming the robustness of the ITER design against disruption forces.

Journal Articles

Baseline study to model a typical condensation-induced water hammer event measured at the two-phase flow test facility (TPTF) in Japan

Schultz, R. R.*; Kondo, Masaya; Anoda, Yoshinari

Emerging Technologies for Fluids, Structures and Fluid-Structure Interaction, 2001 (PVP-Vol.431), p.1 - 12, 2001/07

no abstracts in English

5 (Records 1-5 displayed on this page)
  • 1