Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Martin, P. G.*; Jones, C. P.*; Bartlett, S.*; Ignatyev, K.*; Megson-Smith, D.*; Satou, Yukihiko; Cipiccia, S.*; Batey, D. J.*; Rau, C.*; Sueki, Keisuke*; et al.
Scientific Reports (Internet), 10, p.22056_1 - 22056_17, 2020/12
Times Cited Count:2 Percentile:10.67(Multidisciplinary Sciences)Martin, P.*; Alhaddad, O.*; Verbelen, Y.*; Satou, Yukihiko; Igarashi, Yasuhito*; Scott, T. B.*
Scientific Data (Internet), 7, p.282_1 - 282_8, 2020/08
Times Cited Count:2 Percentile:8.93(Multidisciplinary Sciences)Okeme, I. C.*; Scott, T. B.*; Martin, P. G.*; Satou, Yukihiko; Ojonimi, T. I.*; Olaluwoye, M. O.*
Minerals (Internet), 10(3), p.241_1 - 241_15, 2020/03
Times Cited Count:7 Percentile:43.40(Geochemistry & Geophysics)Martin, P. G.*; Jones, C. P.*; Cipiccia, S.*; Batey, D. J.*; Hallam, K. R.*; Satou, Yukihiko; Griffiths, I.*; Rau, C.*; Richards, D. A.*; Sueki, Keisuke*; et al.
Scientific Reports (Internet), 10(1), p.1636_1 - 1636_11, 2020/01
Times Cited Count:8 Percentile:30.77(Multidisciplinary Sciences)Yamashiki, Yosuke*; Maehara, Hiroyuki*; Airapetian, V.*; Notsu, Yuta*; Sato, Tatsuhiko; Notsu, Shota*; Kuroki, Ryusuke*; Murashima, Keiya*; Sato, Hiroaki*; Namekata, Kosuke*; et al.
Astrophysical Journal, 881(2), p.114_1 - 114_24, 2019/08
Times Cited Count:34 Percentile:80.32(Astronomy & Astrophysics)The impact of Stellar flares on extrasolar planetary systems has been discussed and argued, especially whether there is a potential impact on their life systems. Here, we propose a comprehensive evaluation system for stellar flares, focusing on Stellar Proton Events (SPE) on selected extrasolar planets with hypothetical atmospheres and oceans. This is done by cross-linking KIC flare-observed and flare-estimated stars by their start pots that are directly linked with the Monte Carlo simulation system PHITS through the exoplanetary database system ExoKyoto. The estimated dose at ground level for each planetary surface did not exceed the critical dose for complex animals.
Martin, P. G.*; Louvel, M.*; Cipiccia, S.*; Jones, C. P.*; Batey, D. J.*; Hallam, K. R.*; Yang, I. A. X.*; Satou, Yukihiko; Rau, C.*; Mosselmans, J. F. W.*; et al.
Nature Communications (Internet), 10, p.2801_1 - 2801_7, 2019/06
Times Cited Count:33 Percentile:80.15(Multidisciplinary Sciences)Synchrotron radiation (SR) analysis techniques alongside secondary ion mass spectrometry (SIMS) measurements have been made on sub-mm particulate material derived from reactor Unit 1 of the Fukushima Daiichi Nuclear Power Plant (FDNPP). Using these methods, it has been possible to investigate the distribution, state and isotopic composition of micron-scale U particulate contained within the larger Si-based ejecta material. Through combined SR micro-focused X-ray fluorescence (SR-micro-XRF) and absorption contrast SR micro-focused X-ray tomography (SR-micro-XRT), the U particulate was found to be located around the exterior circumference of the highly-porous particle. Synchrotron radiation micro-focused X-ray absorption near edge structure (SR-micro-XANES) analysis of a number of these entrapped particles revealed them to exist within the U(IV) oxidation state, as UO, and identical in structure to reactor fuel. Confirmation that this U was of nuclear origin (
U-enriched) was provided through secondary ion mass spectrometry (SIMS) analysis with an isotopic enrichment ratio characteristic of a provenance from reactor Unit 1 at the FDNPP. These results provide clear evidence of the event scenario (that a degree of core fragmentation and release occurred from reactor Unit 1), with such spent fuel ejecta existing; (i) within the stable U(IV) oxidation state; and (ii) contained within a bulk Si-based particle. While this U is unlikely to represent an environmental or health hazard, such assertions would likely change, however, should break-up of the Si-containing bulk particle occur. However, more important to the long-term decommissioning of the reactors (and clean-up) on the FDNPP, is the knowledge that core integrity of reactor Unit 1 was compromised with nuclear material existing outside of the reactors primary containment.
Scott, B. D.*; Da Silva, F.*; Kendl, A.*; Miyato, Naoaki; Ribeiro, T.*
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03
We report on developments in the theory and computation of gyrokinetic turbulence in the tokamak edge. A new formulation of the gyrokinetic Lagrangian for the strong EB-flow regime is been found, with clear correspondence to previous forms and to reduced MHD. Conservation of energy, mo-mentum, entropy, and particles is demonstrated at both theoretical and computational level. Neoclassical phenomena and MHD equilibration are shown in our electromagnetic total-f phase-space computational model FEFI. Delta-f gyrokinetic edge turbulence is computed on the full flux surface with the local fluxtube model delta-FEFI and results on the edge/core transition are given. We also present ongoing gyrofluid studies of ELM crash scenarios, including the influence of the bootstrap current in an edge pedestal model on both the initial instability and the resulting turbulence.
Bottino, A.*; Scott, B. D.*; Brunner, S.*; McMillan, B. F.*; Tran, T. M.*; Vernay, T.*; Villard, L.*; Jolliet, S.; Hatzky, R.*; Peeters, A. G.*
IEEE Transactions on Plasma Science, 38(9), p.2129 - 2135, 2010/09
Times Cited Count:26 Percentile:67.77(Physics, Fluids & Plasmas)Qian, J.*; Heinz, A.*; Khoo, T. L.*; Janssens, R. V. F.*; Peterson, D.*; Seweryniak, D.*; Ahmad, I.*; Asai, Masato; Back, B. B.*; Carpenter, M. P.*; et al.
Physical Review C, 79(6), p.064319_1 - 064319_13, 2009/06
Times Cited Count:34 Percentile:84.98(Physics, Nuclear)-,
-, and conversion electron spectroscopy experiments for
Rf have been performed using Fragment Mass Analyzer at Argonne National Laboratory. A new isomer with a half-life of 160
s has been discovered in
Rf, and it is interpreted as a three-quasiparticle high-
isomer. Neutron configurations of one-quasiparticle states in
No, the
-decay daughter of
Rf, have been assigned on the basis of
-decay hindrance factors. Excitation energies of the 1/2
[620] states in
=151 isotones indicate that the deformed shell gap at
=152 increases with the atomic number.