Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Estimation of the effect of GNSS positioning errors on the dose rate calculation concerning aerial radiation monitoring

Mori, Airi; Seguchi, Eisaku*; Futemma, Akira; Iwai, Takeyuki*; Sanada, Yukihisa

Journal of Instrumentation (Internet), 17(10), p.P10015_1 - P10015_11, 2022/10

 Times Cited Count:0 Percentile:0(Instruments & Instrumentation)

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2018 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Komiya, Tomokazu; Iwai, Takeyuki*; Seguchi, Eisaku*; Matsunaga, Yuki*; Kawabata, Tomoki*; Haginoya, Masashi*; Hiraga, Shogo*; Sato, Kazuhiko*; et al.

JAEA-Technology 2019-017, 95 Pages, 2019/11

JAEA-Technology-2019-017.pdf:12.09MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We have carried out the background radiation monitoring around the nuclear power stations of the whole country to apply the airborne radiation monitoring technique that has been cultivated in the aerial monitoring around FDNPS against nuclear emergency response. The results of monitoring around Shimane and Hamaoka Nuclear Power Stations in the fiscal 2018 were summarized in this report. In addition, technical issues were described.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2018 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Komiya, Tomokazu; Iwai, Takeyuki*; Seguchi, Eisaku*; Matsunaga, Yuki*; Kawabata, Tomoki*; Haginoya, Masashi*; Hiraga, Shogo*; et al.

JAEA-Technology 2019-016, 116 Pages, 2019/11

JAEA-Technology-2019-016.pdf:14.09MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been conducted around FDNPS. The results in the fiscal 2018 were summarized in this report. Discrimination method of gamma rays from Rn-progenies was also utilized to evaluate their effect on aerial radiation monitoring. In addition, analysis taken topographical effects into consideration was applied to previous results of airborne monitoring to improve the precision of conventional method.

JAEA Reports

Background radiation monitoring using manned helicopter for establishment of technique of nuclear emergency response in the fiscal year 2017 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; Sato, Kazuhiko*; et al.

JAEA-Technology 2018-016, 98 Pages, 2019/02

JAEA-Technology-2018-016.pdf:18.64MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We have carried out the background monitoring around the nuclear power stations of the whole country to apply the airborne radiation monitoring technique that has been cultivated in Fukushima against nuclear emergency response. The results of monitoring around Tomari, Kashiwazaki-Kariwa and Genkai Nuclear Power Station in the fiscal 2017 were summarized in this report. In addition, technical issues were described.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2017 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; et al.

JAEA-Technology 2018-015, 120 Pages, 2019/02

JAEA-Technology-2018-015.pdf:15.01MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. The results in the fiscal 2017 were summarized in this report. In addition, we developed and systemized the discrimination technique of the Rn-progenies. The accuracy of aerial radiation monitoring was evaluated by taking into consideration GPS data error.

JAEA Reports

Background radiation monitoring using manned helicopter for establishment of technique of nuclear emergency response in the fiscal year 2016 (Contract research)

Sanada, Yukihisa; Mori, Airi; Iwai, Takeyuki; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo; Sato, Yoshiharu; et al.

JAEA-Technology 2017-035, 69 Pages, 2018/02

JAEA-Technology-2017-035.pdf:32.92MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We carried out the background monitoring around the nuclear power stations of the whole country to apply a technique of the airborne radiation monitoring that is cultivated in Fukushima as a technology of nuclear emergency response. This result of the aerial radiation monitoring using the manned helicopter around Ooi, Takahama and Ikata Nuclear Power Station and in the fiscal 2016 were summarized in the report. In addition, technical issues were described.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2016 (Contract research)

Sanada, Yukihisa; Mori, Airi; Iwai, Takeyuki; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo; Sato, Yoshiharu; et al.

JAEA-Technology 2017-034, 117 Pages, 2018/02

JAEA-Technology-2017-034.pdf:25.18MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. This result of the aerial radiation monitoring using the manned helicopter in the fiscal 2016 were summarized in the report. In addition, we developed the discrimination technique of the Rn-progenies. The accuracy of aerial radiation monitoring was evaluated by taking into consideration GPS position error.

Oral presentation

Advancement of airborne radiation measurement technology, 1; Contribution of position precision by GPS for manned helicopter monitoring

Mori, Airi; Sanada, Yukihisa; Seguchi, Eisaku; Kawabata, Tomoki; Munakata, Masahiro

no journal, , 

Count rates of radiation and the positional information (latitude, longitude, and height) are acquired simultaneously in airborne monitoring. The precision of positional information affects the air dose rates at 1 m height because air dose rates at 1 m height are calculated by correction of height. In this study, 3 GPS devices are used in addition to 1 GPS device which has been used in previous airborne monitoring. The most appropriate GPS device were determined by comparing precisions of positional information and influences on air dose rates at 1 m height.

8 (Records 1-8 displayed on this page)
  • 1