Refine your search:     
Report No.
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Problems of lead nuclear data in fusion blanket design

Kondo, Keitaro; Murata, Isao*; Klix, A.*; Seidel, K.*; Freiesleben, H.*

Fusion Engineering and Design, 84(7-11), p.1076 - 1086, 2009/06

 Times Cited Count:3 Percentile:26.15(Nuclear Science & Technology)

Several participants of the International Thermonuclear Experimental Reactor (ITER), such as Japan and EU, intend to introduce a Test Blanket Module (TBM) using a liquid lithium lead eutectic, which is used for the neutron multiplier and the tritium breeder. Recently a preliminary experiment in which a LiAlPb assembly was irradiated with 14 MeV neutrons was conducted at Technische Universit$"{a}$t Dresden. We found out that the neutron flux inside the assembly calculated with JENDL-3.3 underestimates an experimental value in the 10-16 MeV region by around 30% and that in the 0.5-5 MeV region by around 15%, while the calculated flux with JEFF-3.1 overestimates the measurement in the 5-10 MeV region by around 20%. In order to reveal a reason of the discrepancy, problems of the nuclear data libraries for lead were investigated. As a result, the following problems of the evaluated libraries were pointed out: The cross sections of the elastic scattering in JENDL-3.3 for lead isotopes are too small and cause a significant underestimation of the neutron flux above 10 MeV, which appeared in the analysis of the above experiment. Inelastic scattering data for $$^{208}$$Pb in JENDL-3.3 reproduce previous experimental double-differential cross section data most well. However, those for the other lead isotopes have some problems and cause a large underestimation of the neutron flux from 0.5 to 5 MeV. The reason of the overestimation in the energy region of 5-10 MeV with JEFF-3.1 is still unclear.

Journal Articles

Development needs of nuclear data for fusion technology

Fischer, U.*; Batistoni, P.*; Forrest, R. A.*; Konno, Chikara; Perel, R. L.*; Seidel, K.*; Simakov, S. P.*

Proceedings of International Conference on Nuclear Data for Science and Technology (ND 2007), Vol.2, p.973 - 978, 2008/05

An overview is presented of the nuclear data required for nuclear design analyses of fusion technology focusing on ITER, the International Thermonuclear Experimental Reactor, and IFMIF, the International Fusion Materials Irradiation Facility. The status of the available data evaluations and libraries is reviewed with regard to the required materials/nuclides and data types and, in particular, with regard to their quality as compared to differential and integral experimental data. Future development needs are identified on this basis addressing nuclear data evaluations for neutron and photon transport simulations, cross-section data for activation and transmutation calculations, and co-variance data for uncertainty analyses.

Journal Articles

Neutronics experiment on a helium cooled pebble bed (HCPB) breeder blanket mock-up

Batistoni, P.*; Angelone, M.*; Bettinali, L.*; Carconi, P.*; Fischer, U.*; Kodeli, I.*; Leichtle, D.*; Ochiai, Kentaro; Perel, R.*; Pillon, M.*; et al.

Fusion Engineering and Design, 82(15-24), p.2095 - 2104, 2007/10

 Times Cited Count:22 Percentile:82.92(Nuclear Science & Technology)

A neutronics experiment has been performed in the frame of European Fusion Technology Program on a mock-up of the EU Test Blanket Module (TBM), Helium Cooled Pebble Bed (HCPB) concept, with the objective to validate the capability of nuclear data to predict nuclear responses, such as the tritium production rate (TPR), with qualified uncertainties. In the experiment, the TPR has been measured using Li$$_{2}$$CO$$_{3}$$ pellets at various depths at two symmetrical positions at each depth, one in the upper and one in the lower breeder cassette. Three independent measurements were performed by ENEA, TUD/VKTA and JAEA. The neutron flux in the beryllium layer was measured as well using activation foils.

Journal Articles

International benchmark activity of tritium measurement of blanket neutronics

Ochiai, Kentaro; Verzilov, Y. M.; Nishitani, Takeo; Batistoni, P.*; Seidel, K.*

Fusion Science and Technology, 48(1), p.378 - 381, 2005/07

 Times Cited Count:7 Percentile:47.08(Nuclear Science & Technology)

To evaluate the measurement accuracy of the tritium production from $$^{6}$$LiLi(n,t)$$^{4}$$He reactions, an international benchmark program was initiated again under the frame work of an IEA fusion neutronics subtask from 2003. JAERI, ENEA and Technical University of Dresden (TUD) are participating in the activity. This program consists of the calibration of the tritium measurement systems and the verification of the measurement accuracies of the tritium production from $$^{7}$$Li(n,nt)$$^{4}$$He and $$^{6}$$LiLi(n,t)$$^{4}$$He reactions. We have completed the calibration of the measurement system with tritium standard water (HTO) and blind HTO samples. From the results, the scattering of the calibration was within 1.5 %.

4 (Records 1-4 displayed on this page)
  • 1