Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Fujita, Yoshitaka; Seki, Misaki; Ngo, M. C.*; Do, T. M. D.*; Hu, X.*; Yang, Y.*; Takeuchi, Tomoaki; Nakano, Hiroko; Fujihara, Yasuyuki*; Yoshinaga, Hisao*; et al.
KURNS Progress Report 2021, P. 118, 2022/07
no abstracts in English
Seki, Misaki; Fujita, Yoshitaka; Fujihara, Yasuyuki*; Zhang, J.*; Yoshinaga, Hisao*; Sano, Tadafumi*; Hori, Junichi*; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; et al.
Genshiryoku Bakkuendo Kenkyu (CD-ROM), 29(1), p.2 - 9, 2022/06
no abstracts in English
Shibata, Hiroshi; Takeuchi, Tomoaki; Seki, Misaki; Shibata, Akira; Nakamura, Jinichi; Ide, Hiroshi
JAEA-Data/Code 2021-018, 42 Pages, 2022/03
Japan Materials Testing Reactor (JMTR) in Oarai Research and Development Institute of the Japan Atomic Energy Agency has been developing various reactor materials, irradiation techniques and instruments for more than 30 years. Among them, the development of self-powered neutron detectors (SPNDs) and gamma detectors (SPGDs) has been carried out, and several research results have been reported. However, most of the results are based on the design study of the detector development and the results of in-core irradiation tests and gamma irradiation tests using Cobalt-60. In this report, a numerical code is developed based on the paper "Neutron and Gamma-Ray Effects on Self-Powered In-Core Radiation Detectors" written by H.D. Warren and N.H. Shah in 1974, in order to theoretically evaluate the self-powered radiation detectors.
Fujita, Yoshitaka; Seki, Misaki; Sano, Tadafumi*; Fujihara, Yasuyuki*; Suzuki, Tatsuya*; Yoshinaga, Hisao*; Hori, Junichi*; Suematsu, Hisayuki*; Tsuchiya, Kunihiko
Journal of Physics; Conference Series, 2155, p.012018_1 - 012018_6, 2022/01
Technetium-99m (Tc), the daughter nuclide of Molybdenum-99 (
Mo), is the most commonly used radioisotope in radiopharmaceuticals. The research and development (R&D) for the production of
Mo by the neutron activation method ((n,
) method) has been carried out from viewpoints of no-proliferation and nuclear security, etc. Since the specific activity of
Mo produced by the (n,
) method is extremely low, developing Al
O
with a large Mo adsorption capacity is necessary to adapt (n,
)
Mo to the generator. In this study, three kinds of Al
O
specimens with different raw materials were prepared and compared their adaptability to generators by static and dynamic adsorption. MoO
pellet pieces (1.5g) were irradiated with 5 MW for 20 min in the Kyoto University Research Reactor (KUR). Irradiated MoO
pellet pieces were dissolved in 6M-NaOH aq. In dynamic adsorption, 1 g of Al
O
was filled into a PFA tube (
1.59 mm). The
Mo adsorption capacity of Al
O
specimens under dynamic condition was slightly reduced compared to that under static condition. The
Tc elution rate was about 100% at 1.5 mL of milking in dynamic adsorption, while it was around 56-87% in static adsorption. The
Mo/
Tc ratio of dynamic condition was greatly reduced compared to that of static condition. Therefore, the
Tc elution property is greatly affected by the method of adsorbing Mo, e.g., the column shape, the linear flow rate, etc.
Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Daigo, Fumihisa; Ide, Hiroshi; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; Hori, Junichi*; et al.
KURNS Progress Report 2020, P. 136, 2021/08
no abstracts in English
Fujita, Yoshitaka; Seki, Misaki; Sano, Tadafumi*; Fujihara, Yasuyuki*; Kitagawa, Tomoya*; Matsukura, Minoru*; Hori, Junichi*; Suzuki, Tatsuya*; Tsuchiya, Kunihiko
Journal of Radioanalytical and Nuclear Chemistry, 327(3), p.1355 - 1363, 2021/03
Times Cited Count:1 Percentile:25.87(Chemistry, Analytical)We prepared three types of AlO
with different surface structures and investigated
Mo-adsorption/
Tc-elution properties using [
Mo]MoO
that was irradiated in the Kyoto University Research Reactor. Al
O
adsorbed [
Mo]molybdate ions in solutions at different pH; the lower was the pH, the higher was the Mo-adsorption capacity of Al
O
. The
Tc-elution properties of molybdate ion adsorbed Al
O
were elucidated by flowing saline. Consequently, it was suggested that
Mo-adsorption/desorption properties are affected by the specific surface of Al
O
and
Tc-elution properties are affected by the crystal structure of Al
O
.
Seki, Misaki; Nakano, Hiroko; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; Takeuchi, Tomoaki; Ide, Hiroshi; Tsuchiya, Kunihiko
Dekomisshoningu Giho, (62), p.9 - 19, 2020/09
Japan Materials Testing Reactor (JMTR) has been contributing to various research and development activities such as the fundamental research of nuclear materials/fuels, safety research and development of power reactors, and radioisotope production since the beginning of the operation in 1968. JMTR, however, was decided as a one of decommission facilities in April 2017 and it is taken an inspection of a plan concerning decommissioning because the performance of JMTR does not confirm with the stipulated earthquake resistance. As aluminum and beryllium are used for the core structural materials in JMTR, it is necessary to establish treatment methods of these materials for the fabrication of stable wastes. In addition, a treatment method for the accumulated spent ion-exchange resins needs to be examined. This report describes the overview of these examination situations.
Seki, Misaki; Ishikawa, Koji*; Sano, Tadafumi*; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; Hanakawa, Hiroki; Ide, Hiroshi; Tsuchiya, Kunihiko; Fujihara, Yasuyuki*; et al.
KURNS Progress Report 2019, P. 279, 2020/08
no abstracts in English
Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Kato, Yoshiaki; Sayato, Natsuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; Hori, Junichi*; et al.
KURNS Progress Report 2019, P. 157, 2020/08
no abstracts in English
Seki, Misaki; Ishikawa, Koji*; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; Hanakawa, Hiroki; Ide, Hiroshi; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.
KURNS Progress Report 2018, P. 257, 2019/08
no abstracts in English
Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Kimura, Akihiro; Shibata, Akira; Sayato, Natsuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.
KURNS Progress Report 2018, P. 155, 2019/08
no abstracts in English
Otsuka, Kaoru; Ide, Hiroshi; Nagata, Hiroshi; Omori, Takazumi; Seki, Misaki; Hanakawa, Hiroki; Nemoto, Hiroyoshi; Watanabe, Masao; Iimura, Koichi; Tsuchiya, Kunihiko; et al.
UTNL-R-0499, p.12_1 - 12_8, 2019/03
no abstracts in English
Suematsu, Hisayuki*; Seki, Misaki*; Sato, Soma*; Nanko, Makoto*; Tsuchiya, Kunihiko; Nishikata, Kaori; Suzuki, Tsuneo*; Nakayama, Tadachika*; Niihara, Koichi*
no journal, ,
no abstracts in English
Suematsu, Hisayuki*; Sato, Soma*; Seki, Misaki*; Nanko, Makoto*; Nishikata, Kaori; Suzuki, Yoshitaka; Tsuchiya, Kunihiko; Suzuki, Tsuneo*; Nakayama, Tadachika*; Niihara, Koichi*
no journal, ,
Tc has been utilized as a radioactive isotope in medical applications. The majority of this isotope has been separated from nuclear fission products in testing reactors with highly enriched
U fuel. However, these reactors have been shut down because of the age and the nuclear security reasons. On the other hand, a nuclear reaction method has been proposed. This method is to irradiate
Mo by neutrons in a reactor to form
Mo and then to decay to
Tc. As the target, MoO
pellets are required. However, because of the low evaporation temperature (700
C) and coarse grain size of
Mo enriched powder, it was difficult to obtain high density MoO
pellets. To overcome this problem, a two-step loading method in pulsed electric current sintering was carried out in this study.
Seki, Misaki*; Suematsu, Hisayuki*; Nakayama, Tadachika*; Suzuki, Tsuneo*; Niihara, Koichi*; Suzuki, Tatsuya*; Tsuchiya, Kunihiko; Duong Van, D.*
no journal, ,
no abstracts in English
Suematsu, Hisayuki*; Seki, Misaki; Nakayama, Tadachika*; Nishikata, Kaori; Nanko, Makoto*; Suzuki, Tatsuya*; Tsuchiya, Kunihiko
no journal, ,
Pulsed electric current sintering (PECS) of MoO was carried out for a high density target to produce
Tc from
Mo in a nuclear reactor. The green compacts of MoO
were heated in a PECS apparatus with a heating rate of 100
C/min to 450 - 550
C in vacuum and changing the pressurization profile from 0 to 40 MPa. After two step pressurization for sintering at 550
C, the sintered MoO
bulk had a relative density of 94%, which was higher than that of one step pressurization. Direct temperature measurements near the sample were carried out. The results indicated that the sample temperature was higher for the two step than for the one step pressurization even in the same die temperature experiments. By the low pressure in two step pressurization, it was thought that open pores remained in the sintered body to reduce MoO
in vacuum. This oxygen depleted MoO
grains showed low electrical resistivity and formed a current path in the sintered body to increase the temperature to increase the relative density.
Fujita, Yoshitaka; Seki, Misaki; Sano, Tadafumi*; Suzuki, Tatsuya*; Kitagawa, Tomoya*; Nishikata, Kaori; Matsukura, Minoru*; Tsuchiya, Kunihiko
no journal, ,
no abstracts in English
Seki, Misaki; Ishikawa, Koji*; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; Suzuki, Yumi*; Tanaka, Atsushi*; Kawakami, Tomohiko*; Ide, Hiroshi; Tsuchiya, Kunihiko
no journal, ,
no abstracts in English
Seki, Misaki; Ishikawa, Koji*; Fujihara, Yasuyuki*; Sano, Tadafumi*; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; Ide, Hiroshi; Hori, Junichi*; Tsuchiya, Kunihiko
no journal, ,
no abstracts in English
Nishikata, Kaori; Fujita, Yoshitaka; Seki, Misaki; Takeuchi, Tomoaki; Ide, Hiroshi; Tsuchiya, Kunihiko
no journal, ,
no abstracts in English