Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Stability and quench analysis of toroidal field coils for ITER

Takahashi, Yoshikazu; Yoshida, Kiyoshi; Nabara, Yoshihiro; Edaya, Masahiro*; Bessette, D.*; Shatil, N.*; Mitchell, N.*

IEEE Transactions on Applied Superconductivity, 17(2), p.2426 - 2429, 2007/06

 Times Cited Count:14 Percentile:58.29(Engineering, Electrical & Electronic)

The ITER TF coils consists of 18 D-shape coils. The operating current, the maximum field and the stored magnetic energy are 68 kA, 11.8 T and 41 GJ, respectively. A Nb$$_{3}$$Sn cable-in-conduit conductor with a central channel is used, with a cooling length of 380 m. An accurate prediction of the coil performance requires, in addition to assessments of the superconductor behavior, a thermohydraulic analysis of the supercritical He. The overall thermohydraulic conditions were simulated by the full-scale quasi three dimensional code VINCENTA. Analysis of stability and quench was carried out using one dimensional Gandalf electric and thermohydraulic code. An interface was written between these codes. The stability margin against the mechanical disturbance and due to a plasma disruption was estimated. In the quench analysis, the temperature rise during the fast discharge was calculated. According to these results, it is confirmed that the TF coils will be operated with the designed performance.

Journal Articles

Design and performance analysis of the ITER cryoplant and cryo-distribution subsystem

Guillemet, L.*; Jager, B.*; Haange, R.*; Hamada, Kazuya; Hara, Eiji*; Kalinin, G.*; Kato, Takashi; Millet, F.*; Shatil, N.*

Proceedings of 19th International Cryogenic Engineering Conference (ICEC-19), p.105 - 108, 2002/07

Japan Atomic Energy Research Institute has designed a ITER cryoplant and cryo-distribution in the international collaboration. The ITER cryoplant that will be the largest cryogenic system for the Fusion facility in the world, is designed to be stable in operation despite the pulsed nature of heat deposition in the magnet system. The refrigeration capacity of cryoplant is 48 kW at 4.5 K of refrigeration power and 0.16 kg/s of supercritical helium supply. In the cryoplant, a supercritical helium pump and a cold compressor is applied, based on the successful achievement of cryogenic system for the ITER central solenoid model coil.

2 (Records 1-2 displayed on this page)
  • 1