Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Comparison of dose and risk estimates between ISS Partner Agencies for a 30-day Lunar Mission

Shavers, M. R.*; Semones, E. J.*; Shurshakov, V.*; Dobynde, M.*; Sato, Tatsuhiko; Komiyama, Tatsuto*; Tomi, L.*; Chen, J.*; El-Jaby, S.*; Straube, U.*; et al.

Journal of Medical Physics - Zeitschrift f$"u$r medizinische Physik -, 13 Pages, 2023/00

 Times Cited Count:0

The Partner Agencies of the International Space Station (ISS) present an intracomparison of the ionizing radiation absorbed dose and risk quantities used to characterize example mission lunar space. The results and the work itself provide insights to the level of agreement with which space agencies can perform organ dosimetry and calculate effective dose. This work was performed in collaboration with the advisory and guidance efforts of the International Commission on Radiological Protection (ICRP) Task Group 115 and will be presented in an ICRP Report

Journal Articles

A Comparative study of space radiation organ doses and associated cancer risks using PHITS and HZETRN

Bahadori, A. A.*; Sato, Tatsuhiko; Slaba, T. C.*; Shavers, M. R.*; Semones, E. J.*; Baalen, M. V.*; Bolch, W. E.*

Physics in Medicine & Biology, 58(20), p.7183 - 7207, 2013/10

 Times Cited Count:11 Percentile:40.01(Engineering, Biomedical)

In the present study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code (HZETRN) to perform one-dimensional deterministic transport and using the Particle and Heavy Ion Transport code System (PHITS) to perform three-dimensional Monte Carlo transport. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.

2 (Records 1-2 displayed on this page)
  • 1