Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Spallation and fragmentation cross sections for 168 MeV/nucleon $$^{136}$$Xe ions on proton, deuteron, and carbon targets

Sun, X. H.*; Wang, H.*; Otsu, Hideaki*; Sakurai, Hiroyoshi*; Ahn, D. S.*; Aikawa, Masayuki*; Fukuda, Naoki*; Isobe, Tadaaki*; Kawakami, Shunsuke*; Koyama, Shumpei*; et al.

Physical Review C, 101(6), p.064623_1 - 064623_12, 2020/06

 Times Cited Count:2 Percentile:35.83(Physics, Nuclear)

The spallation and fragmentation reactions of $$^{136}$$Xe induced by proton, deuteron and carbon at 168 MeV/nucleon were studied at RIKEN Radioactive Isotope Beam Factory via the inverse kinematics technique. The cross sections of the lighter products are larger in the carbon-induced reactions due to the higher total kinetic energy of carbon. The energy dependence was investigated by comparing the newly obtained data with previous results obtained at higher reaction energies. The experimental data were compared with the results of SPACS, EPAX, PHITS and DEURACS calculations. These data serve as benchmarks for the model calculations.

Journal Articles

Structure of $$^{55}$$Sc and development of the $$N=34$$ subshell closure

Steppenbeck, D.*; Takeuchi, Satoshi*; Aoi, Nori*; Doornenbal, P.*; Matsushita, Masafumi*; Wang, H.*; Baba, Hidetada*; Go, Shintaro*; Holt, J. D.*; Lee, J.*; et al.

Physical Review C, 96(6), p.064310_1 - 064310_10, 2017/12

 Times Cited Count:13 Percentile:79.17(Physics, Nuclear)

no abstracts in English

Journal Articles

$$gamma$$ decay of unbound neutron-hole states in $$^{133}$$Sn

Vaquero, V.*; Jungclaus, A.*; Doornenbal, P.*; Wimmer, K.*; Gargano, A.*; Tostevin, J. A.*; Chen, S.*; N$'a$cher, E.*; Sahin, E.*; Shiga, Yoshiaki*; et al.

Physical Review Letters, 118(20), p.202502_1 - 202502_5, 2017/05

 Times Cited Count:14 Percentile:76.72(Physics, Multidisciplinary)

Journal Articles

Low-lying structure of $$^{50}$$Ar and the $$N$$=32 subshell closure

Steppenbeck, D.*; Takeuchi, Satoshi*; Aoi, Nori*; Doornenbal, P.*; Matsushita, Masafumi*; Wang, H.*; Utsuno, Yutaka; Baba, Hidetada*; Go, Shintaro*; Lee, J.*; et al.

Physical Review Letters, 114(25), p.252501_1 - 252501_6, 2015/06

 Times Cited Count:32 Percentile:87.13(Physics, Multidisciplinary)

The neutron-rich nucleus $$^{50}$$Ar is produced by the fragmentation reactions of $$^{54}$$Ca, $$^{55}$$Sc, and $$^{56}$$Ti at the RIBF facility in RIKEN, and its deexcited $$gamma$$ rays are observed for the first time. The first $$2^+$$ level in $$^{50}$$Ar is identified to lie at 1178(18)keV from the most intense $$gamma$$-ray spectra. This experimental data, together with the systematics of the $$2^+$$ levels for surrounding nuclei, is analyzed with large-scale shell-model calculations. Consequently, the $$N=32$$ sub-shell gap in $$^{50}$$Ar is equivalent to that of $$^{52}$$Ca, thus making the $$2^+$$ level in $$^{50}$$Ar higher than that of $$^{48}$$Ar. The shell-model calculation also predicts that the $$N=34$$ sub-shell gap enhances in going from Ca to Ar, which will be verified by forthcoming experiments for $$^{52}$$Ar.

Journal Articles

The Key role of vibrational entropy in the phase transitions of dithiazolyl-based bistable magnetic materials

Vela, S.*; Mota, F.*; Deumal, M.*; Suizu, Rie*; Shuku, Yoshiaki*; Mizuno, Asato*; Awaga, Kunio*; Shiga, Motoyuki; Novoa, J.*; Ribas-Arino, J.*

Nature Communications (Internet), 5, p.4411_1 - 4411_9, 2014/07

Recent years have witnessed a growing interest in the use of organic radicals as building blocks for bistable materials, i.e. materials that exist in two inter-exchangeable phases under identical thermodynamic conditions. The neutral radical TTTA is a prominent dithiazolyl-based compound because of its spin transition with a hysterisis nature near the room temperature. From ab initio molecular dynamics simulations, it has been evident that this phase transition is driven by the pair exchange dynamics of molecular stacking units accompanied by a significant gain of vibrational entropy.

Journal Articles

Evidence for a new nuclear "magic number" from the level structure of $$^{54}$$Ca

Steppenbeck, D.*; Takeuchi, Satoshi*; Aoi, Nori*; Doornenbal, P.*; Matsushita, Masafumi*; Wang, H.*; Baba, Hidetada*; Fukuda, Naoki*; Go, Shintaro*; Homma, Michio*; et al.

Nature, 502(7470), p.207 - 210, 2013/10

 Times Cited Count:229 Percentile:99.78(Multidisciplinary Sciences)

no abstracts in English

6 (Records 1-6 displayed on this page)
  • 1