Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of grain boundary on the friction coefficient of pure Fe under the oil lubrication

Adachi, Nozomu*; Matsuo, Yasutaka*; Todaka, Yoshikazu*; Fujimoto, Mikiya*; Hino, Masahiro*; Mitsuhara, Masatoshi*; Oba, Yojiro; Shiihara, Yoshinori*; Umeno, Yoshitaka*; Nishida, Minoru*

Tribology International, 155, p.106781_1 - 106781_9, 2021/03

 Times Cited Count:0 Percentile:0(Engineering, Mechanical)

Journal Articles

First-principles study of hydrogen segregation at the MgZn$$_{2}$$ precipitate in Al-Mg-Zn alloys

Tsuru, Tomohito; Yamaguchi, Masatake; Ebihara, Kenichi; Itakura, Mitsuhiro; Shiihara, Yoshinori*; Matsuda, Kenji*; Toda, Hiroyuki*

Computational Materials Science, 148, p.301 - 306, 2018/06

 Times Cited Count:21 Percentile:76.28(Materials Science, Multidisciplinary)

Hydrogen embrittlement susceptibility of high strength 7xxx series Al alloys has been recognized as the critical issues in the practical use of Al alloys. Focusing on the interface between MgZn$$_{2}$$ precipitates and an Al matrix, which is considered as one of the important segregation sites in these alloys, we investigated the stable $$eta$$-MgZn$$_{2}$$-Al interface, and the possible hydrogen trap sites in MgZn$$_{2}$$ and at the $$eta$$-MgZn$$_{2}$$-Al interface via first-principles calculation. Most of the interstitial sites inside the MgZn$$_{2}$$ crystal were not possible trap sites because their energy is relatively higher than that of other trap sites. The trap energy of the most favorable site at the $$eta$$-MgZn$$_{2}$$-Al is approximately -0.3 eV/H, which is more stable that of the interstitial site at the grain boundary. The interface between MgZn$$_{2}$$ and Al is likely to be a possible trap site in Al alloys.

Oral presentation

First-principles study on mechanical properties in high entropy alloys

Tsuru, Tomohito; Lobzenko, I.; Shiihara, Yoshinori*; Wei, D.*; Yamashita, Shinichiro; Itakura, Mitsuhiro; 10 of others*

no journal, , 

High entropy alloys (HEAs) are chemically complex single- or multi-phase alloys with crystal structures. There are no major components but five or more elements are included with near equiatomic fraction. In such a situation, deformation behavior can no longer be described by conventional solid solution strengthening model. Some HEAs, indeed, show higher strengthening behavior and anomalous slip. However, the mechanisms of these features have yet to be understood. Dislocation structure and motion should be the key to identify the unique feature of mechanical properties of HEAs. In the present study, we investigated the core structure of dislocations in body centered cubic (BCC) HEAs using density functional theory (DFT) calculations. The Random structure and ZrNbTaTiHf and the SRO structure obtained from the 800 K MC calculation in two BCC-HEA MoNbTaVW was prepared. Then, the energy distribution when the dislocation dipoles were introduced at 135 sites were calculated. We found that the dislocation formation energy is smaller in ZrNbTaTiHf, which has a large difference in MSAD and a large lattice distortion.

Oral presentation

Study of interaction between dislocations and void by using neural network atomic potential in BCC iron

Mori, Hideki*; Itakura, Mitsuhiro; Okumura, Masahiko; Shiihara, Yoshinori*; Matsunaka, Daisuke*

no journal, , 

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1