Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 165

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Raman spectroscopy study of bicarbonate effects on UO$$_{2+x}$$

McGrady, J.; Kumagai, Yuta; Watanabe, Masayuki; Kirishima, Akira*; Akiyama, Daisuke*; Kimuro, Shingo; Ishidera, Takamitsu

Journal of Nuclear Science and Technology, 60(12), p.1586 - 1594, 2023/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Raman identification and characterization of chemical components included in simulated nuclear fuel debris synthesized from uranium, stainless steel, and zirconium

Kusaka, Ryoji; Kumagai, Yuta; Watanabe, Masayuki; Sasaki, Takayuki*; Akiyama, Daisuke*; Sato, Nobuaki*; Kirishima, Akira*

Journal of Nuclear Science and Technology, 60(5), p.603 - 613, 2023/05

 Times Cited Count:1 Percentile:31.61(Nuclear Science & Technology)

Journal Articles

Phase analysis of simulated nuclear fuel debris synthesized using UO$$_{2}$$, Zr, and stainless steel and leaching behavior of the fission products and matrix elements

Tonna, Ryutaro*; Sasaki, Takayuki*; Kodama, Yuji*; Kobayashi, Taishi*; Akiyama, Daisuke*; Kirishima, Akira*; Sato, Nobuaki*; Kumagai, Yuta; Kusaka, Ryoji; Watanabe, Masayuki

Nuclear Engineering and Technology, 55(4), p.1300 - 1309, 2023/04

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

Simulated debris was synthesized using UO$$_{2}$$, Zr, and stainless steel and a heat treatment method under inert or oxidizing conditions. The primary U solid phase of the debris synthesized at 1473 K under inert conditions was UO$$_{2}$$, whereas a (U,Zr)O$$_{2}$$ solid solution formed at 1873 K. Under oxidizing conditions, a mixture of U$$_{3}$$O$$_{8}$$ and (Fe,Cr)UO$$_{4}$$ phases formed at 1473 K whereas a (U,Zr)O$$_{2+x}$$ solid solution formed at 1873 K. The leaching behavior of the fission products from the simulated debris was evaluated using two methods: the irradiation method, for which fission products were produced via neutron irradiation, and the doping method, for which trace amounts of non-radioactive elements were doped into the debris. The dissolution behavior of U depended on the properties of the debris and aqueous medium the debris was immersed in. Cs, Sr, and Ba leached out regardless of the primary solid phases. The leaching of high-valence Eu and Ru ions was suppressed, possibly owing to their solid-solution reaction with or incorporation into the uranium compounds of the simulated debris.

Journal Articles

Application of high-energy-resolution X-ray absorption spectroscopy at the U L$$_{3}$$-edge to assess the U(V) electronic structure in FeUO$$_{4}$$

Yomogida, Takumi; Akiyama, Daisuke*; Ouchi, Kazuki; Kumagai, Yuta; Higashi, Kotaro*; Kitatsuji, Yoshihiro; Kirishima, Akira*; Kawamura, Naomi*; Takahashi, Yoshio*

Inorganic Chemistry, 61(50), p.20206 - 20210, 2022/12

 Times Cited Count:2 Percentile:36.89(Chemistry, Inorganic & Nuclear)

FeUO$$_{4}$$ was studied to clarify the electronic structure of U(V) in a metal monouranate compound. We obtained the peak splitting of HERFD-XANES spectra utilizing high-energy-resolution fluorescence detection-X-ray absorption near edge structure (HERFD-XANES) spectroscopy at the U L$$_{3}$$-edge, which is a novel technique in the U(V) compounds. Theoretical calculations revealed that the peak splitting was caused by splitting the 6d orbital of U(V). Such distinctive electronic states are of major interest to researchers and engineers working in various fields, from fundamental physics to the nuclear industry and environmental sciences for actinide elements.

JAEA Reports

Development of technologies for enhanced analysis accuracy of fuel debris; Summary results of the 2020 fiscal year (Subsidy program for the project of decommissioning and contaminated water management)

Ikeuchi, Hirotomo; Koyama, Shinichi; Osaka, Masahiko; Takano, Masahide; Nakamura, Satoshi; Onozawa, Atsushi; Sasaki, Shinji; Onishi, Takashi; Maeda, Koji; Kirishima, Akira*; et al.

JAEA-Technology 2022-021, 224 Pages, 2022/10

JAEA-Technology-2022-021.pdf:12.32MB

A set of technology, including acid dissolving, has to be established for the analysis of content of elements/nuclides in the fuel debris samples. In this project, a blind test was performed for the purpose of clarifying the current level of analytical accuracy and establishing the alternative methods in case that the insoluble residue remains. Overall composition of the simulated fuel debris (homogenized powder having a specific composition) were quantitatively determined in the four analytical institutions in Japan by using their own dissolving and analytical techniques. The merit and drawback for each technique were then evaluated, based on which a tentative flow of the analyses of fuel debris was constructed.

Journal Articles

Study on the relation between the crystal structure and thermal stability of FeUO$$_{4}$$ and CrUO$$_{4}$$

Akiyama, Daisuke*; Kusaka, Ryoji; Kumagai, Yuta; Nakada, Masami; Watanabe, Masayuki; Okamoto, Yoshihiro; Nagai, Takayuki; Sato, Nobuaki*; Kirishima, Akira*

Journal of Nuclear Materials, 568, p.153847_1 - 153847_10, 2022/09

 Times Cited Count:3 Percentile:68.71(Materials Science, Multidisciplinary)

FeUO$$_{4}$$, CrUO$$_{4}$$, and Fe$$_{x}$$Cr$$_{1-x}$$UO$$_{4}$$ are monouranates containing pentavalent U. Even though these compounds have similar crystal structures, their formation conditions and thermal stability are significantly different. To determine the factors causing the difference in thermal stability between FeUO$$_{4}$$ and CrUO$$_{4}$$, their crystal structures were evaluated in detail. A Raman band was observed at 700 cm$$^{-1}$$ in all the samples. This Raman band was derived from the stretching vibration of the O-U-O axis band, indicating that Fe$$_{x}$$Cr$$_{1-x}$$UO$$_{4}$$ was composed of a uranyl-like structure in its lattice regardless of its "x"' value. M$"o$ssbauer measurements indicated that the Fe in FeUO$$_{4}$$ and Fe$$_{x}$$Cr$$_{1-x}$$UO$$_{4}$$ were trivalent. Furthermore, Fe$$_{x}$$Cr$$_{1-x}$$UO$$_{4}$$ lost its symmetry around Fe$$^{mathrm{III}}$$ with increasing electron densities around Fe$$^{mathrm{III}}$$, as the abundance of Cr increased. These results suggested no significant structural differences between FeUO$$_{4}$$ and CrUO$$_{4}$$. Thermogravimetric measurements for UO$$_{2}$$, FeUO$$_{4}$$, and CrUO$$_{4}$$ showed that the temperature at which FeUO$$_{4}$$ decomposed under an oxidizing condition (approximately 800 $$^{circ}$$C) was significantly lower than the temperature at which the decomposition of CrUO$$_{4}$$ started (approximately 1250 $$^{circ}$$C). Based on these results, we concluded that the decomposition of FeUO$$_{4}$$ was triggered by an "in-crystal" redox reaction, i.e., Fe$$^{mathrm{III}}$$ $${+}$$ U$$^{mathrm{V}}$$ $$rightarrow$$ Fe$$^{mathrm{II}}$$ $${+}$$ U$$^{mathrm{VI}}$$, which would not occur in the CrUO$$_{4}$$ lattice because Cr$$^{mathrm{III}}$$ could never be reduced under the investigated condition. Finally, the existence of Cr$$^{mathrm{III}}$$ in FexCr$$_{1-x}$$UO$$_{4}$$ effectively suppressed the decomposition of the Fe$$_{x}$$Cr$$_{1-x}$$UO$$_{4}$$ crystal, even at a very low Cr content.

Journal Articles

Structure, stability, and actinide leaching of simulated nuclear fuel debris synthesized from UO$$_{2}$$, Zr, and stainless-steel

Kirishima, Akira*; Akiyama, Daisuke*; Kumagai, Yuta; Kusaka, Ryoji; Nakada, Masami; Watanabe, Masayuki; Sasaki, Takayuki*; Sato, Nobuaki*

Journal of Nuclear Materials, 567, p.153842_1 - 153842_15, 2022/08

 Times Cited Count:4 Percentile:78.52(Materials Science, Multidisciplinary)

To understand the chemical structure and stability of nuclear fuel debris consisting of UO$$_{2}$$, Zr, and Stainless Steel (SUS) generated by the Fukushima Daiichi Nuclear Power Plant accident in Japan in 2011, simulated debris of the UO$$_{2}$$-SUS-Zr system and other fundamental component systems were synthesized and characterized. The simulated debris were synthesized by heat treatment for 1 to 12 h at 1600$$^{circ}$$C, in inert (Ar) or oxidative (Ar + 2% O$$_{2}$$) atmospheres. $$^{237}$$Np and $$^{241}$$Am tracers were doped for the leaching tests of these elements and U from the simulated debris. The characterization of the simulated debris was conducted by XRD, SEM-EDX, Raman spectroscopy, and M$"o$ssbauer spectroscopy, which provided the major uranium phase of the UO $$_{2}$$-SUS-Zr debris was the solid solution of U$$^{mathrm{IV}}$$O$$_{2}$$ (s.s.) with Zr(IV) and Fe(II) regardless of the treatment atmosphere. The long-term immersion test of the simulated debris in pure water and that in seawater revealed the macro scale crystal structure of the simulated debris was chemically very stable in the wet condition for a year or more. Furthermore, the leaching test results showed that the actinide leaching ratios of U, Np, Am from the UO$$_{2}$$-SUS-Zr debris were very limited and less than 0.08 % for all the experiments in this study.

Journal Articles

Uranium dissolution and uranyl peroxide formation by immersion of simulated fuel debris in aqueous H$$_{2}$$O$$_{2}$$ solution

Kumagai, Yuta; Kusaka, Ryoji; Nakada, Masami; Watanabe, Masayuki; Akiyama, Daisuke*; Kirishima, Akira*; Sato, Nobuaki*; Sasaki, Takayuki*

Journal of Nuclear Science and Technology, 59(8), p.961 - 971, 2022/08

 Times Cited Count:2 Percentile:53.91(Nuclear Science & Technology)

We investigated potential degradation of fuel debris caused by H$$_{2}$$O$$_{2}$$, which is the oxidant of major impact from water radiolysis. We performed leaching experiments on different kinds of simulated debris comprising U, Fe, Cr, Ni, and Zr in an aqueous H$$_{2}$$O$$_{2}$$ solution. Chemical analysis of the leaching solution showed that U dissolution was induced by H$$_{2}$$O$$_{2}$$. Raman analysis after the leaching revealed that uranyl peroxides were formed on the surface of the simulated debris. These results demonstrate that uranyl peroxides are possible alteration products of fuel debris from H$$_{2}$$O$$_{2}$$ reaction. However, the sample in which the main uranium-containing phase was a U-Zr oxide solid solution showed much less uranium dissolution and no Raman signal of uranyl peroxides. Comparison of these results indicates that formation of an oxide solid solution of Zr with UO$$_{2}$$ improves the stability of fuel debris against H$$_{2}$$O$$_{2}$$ reaction.

Journal Articles

Deep groundwater physicochemical components affecting actinide migration

Kirishima, Akira*; Terasaki, Mariko*; Miyakawa, Kazuya; Okamoto, Yoshihiro; Akiyama, Daisuke*

Chemosphere, 289, p.133181_1 - 133181_12, 2022/04

 Times Cited Count:1 Percentile:6.09(Environmental Sciences)

no abstracts in English

Journal Articles

A Study of H$$_{2}$$O$$_{2}$$-induced oxidative degradation of simulated fuel debris

Kumagai, Yuta; Kusaka, Ryoji; Nakada, Masami; Watanabe, Masayuki; Akiyama, Daisuke*; Kirishima, Akira*; Sato, Nobuaki*; Sasaki, Takayuki*

Hoshasen Kagaku (Internet), (113), p.61 - 64, 2022/04

The severe accident at TEPCO's Fukushima Daiichi Nuclear Power Station resulted in generation of fuel debris. The fuel debris is in contact with water and the radiolysis of water can accelerate degradation of the debris. The analysis of particles sampled from inside or near the damaged reactors indicates the complicated compositions of the fuel debris. It is challenging to estimate the effect of water radiolysis on such a complicated material. Therefore, in this study, we investigated the potential degradation process by leaching experiments of simulated fuel debris in aqueous H$$_{2}$$O$$_{2}$$ solution. The results show that the reaction of H$$_{2}$$O$$_{2}$$ induced uranium dissolution from most of the samples and then formation of uranyl peroxides. In contrast, a sample that had U-Zr oxide solid solution as the major phase exhibited remarkable resistance to H$$_{2}$$O$$_{2}$$. These findings revealed that the degradation of the simulated debris reflects the reactivity and stability of the uranium phase in the matrices.

Journal Articles

Speciation on the reaction of uranium and zirconium oxides treated under oxidizing and reducing atmospheres

Uehara, Akihiro*; Akiyama, Daisuke*; Ikeda, Atsushi; Numako, Chiya*; Terada, Yasuko*; Nitta, Kiyofumi*; Ina, Toshiaki*; Takeda-Homma, Shino*; Kirishima, Akira*; Sato, Nobuaki*

Journal of Nuclear Materials, 559, p.153422_1 - 153422_11, 2022/02

 Times Cited Count:2 Percentile:53.91(Materials Science, Multidisciplinary)

Journal Articles

Star-polymer-DNA gels showing highly predictable and tunable mechanical responses

Ohira, Masashi*; Katashima, Takuya*; Naito, Mitsuru*; Aoki, Daisuke*; Yoshikawa, Yusuke*; Iwase, Hiroki*; Takata, Shinichi; Miyata, Kanjiro*; Chung, U.-I.*; Sakai, Takamasa*; et al.

Advanced Materials, 34(13), p.2108818_1 - 2108818_9, 2022/01

 Times Cited Count:13 Percentile:89.09(Chemistry, Multidisciplinary)

Journal Articles

Catalog of gamma-ray glows during four winter seasons in Japan

Wada, Yuki*; Matsumoto, Takahiro*; Enoto, Teruaki*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Furuta, Yoshihiro*; Yonetoku, Daisuke*; Sawano, Tatsuya*; Okada, Go*; Nanto, Hidehito*; et al.

Physical Review Research (Internet), 3(4), p.043117_1 - 043117_31, 2021/12

Journal Articles

Investigation of chemical state of uranium included in simulated waste glass

Nagai, Takayuki; Akiyama, Daisuke*; Kirishima, Akira*; Sato, Nobuaki*; Okamoto, Yoshihiro

2020-Nendo "Busshitsu, Debaisu Ryoiki Kyodo Kenkyu Kyoten" Oyobi "Hito, Kankyo To Busshitsu O Tsunagu Inobeshion Soshutsu Dainamikku, Araiansu" Kenkyu Seika, Katsudo Hokokusho (CD-ROM), 1 Pages, 2021/11

no abstracts in English

Journal Articles

Summary results of subsidy program for the "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy and Thermal Behavior Estimation of Fuel Debris))"

Koyama, Shinichi; Nakagiri, Toshio; Osaka, Masahiko; Yoshida, Hiroyuki; Kurata, Masaki; Ikeuchi, Hirotomo; Maeda, Koji; Sasaki, Shinji; Onishi, Takashi; Takano, Masahide; et al.

Hairo, Osensui Taisaku jigyo jimukyoku Homu Peji (Internet), 144 Pages, 2021/08

JAEA performed the subsidy program for the "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy and Thermal Behavior Estimation of Fuel Debris))" in 2020JFY. This presentation summarized briefly the results of the project, which will be available shortly on the website of Management Office for the Project of Decommissioning and Contaminated Water Management.

Journal Articles

The Kinetics and mechanism of H$$_{2}$$O$$_{2}$$ decomposition at the U$$_{3}$$O$$_{8}$$ surface in bicarbonate solution

McGrady, J.; Kumagai, Yuta; Watanabe, Masayuki; Kirishima, Akira*; Akiyama, Daisuke*; Kitamura, Akira; Kimuro, Shingo

RSC Advances (Internet), 11(46), p.28940 - 28948, 2021/08

 Times Cited Count:5 Percentile:38.19(Chemistry, Multidisciplinary)

Journal Articles

Distribution of studtite and metastudtite generated on the surface of U$$_{3}$$O$$_{8}$$; Application of Raman imaging technique to uranium compound

Kusaka, Ryoji; Kumagai, Yuta; Yomogida, Takumi; Takano, Masahide; Watanabe, Masayuki; Sasaki, Takayuki*; Akiyama, Daisuke*; Sato, Nobuaki*; Kirishima, Akira*

Journal of Nuclear Science and Technology, 58(6), p.629 - 634, 2021/06

 Times Cited Count:7 Percentile:66.68(Nuclear Science & Technology)

Journal Articles

Investigation of chemical state of uranium included in simulated waste glass

Nagai, Takayuki; Akiyama, Daisuke*; Kirishima, Akira*; Sato, Nobuaki*; Okamoto, Yoshihiro

2019-Nendo "Busshitsu, Debaisu Ryoiki Kyodo Kenkyu Kyoten" Oyobi "Hito, Kankyo To Busshitsu O Tsunagu Inobeshion Soshutsu Dainamikku, Araiansu" Kenkyu Seika, Katsudo Hokokusho (CD-ROM), P. 20191107_1, 2020/11

no abstracts in English

Journal Articles

Production of $$^{266}$$Bh in the $$^{248}$$Cm($$^{23}$$Na,5$$n$$)$$^{266}$$Bh reaction and its decay properties

Haba, Hiromitsu*; Fan, F.*; Kaji, Daiya*; Kasamatsu, Yoshitaka*; Kikunaga, Hidetoshi*; Komori, Yukiko*; Kondo, Narumi*; Kudo, Hisaaki*; Morimoto, Koji*; Morita, Kosuke*; et al.

Physical Review C, 102(2), p.024625_1 - 024625_12, 2020/08

 Times Cited Count:6 Percentile:59.56(Physics, Nuclear)

Journal Articles

Multi-methodical study of the Ti, Fe$$^{2+}$$ and Fe$$^{3+}$$ distribution in chevkinite-subgroup minerals; X-ray diffraction, neutron diffraction, $$^{57}$$Fe M$"o$ssbauer spectroscopy and electron-microprobe analyses

Nagashima, Mariko*; Armbruster, T.*; Akasaka, Masahide*; Sano, Asami; Nishio-Hamane, Daisuke*; Malsy, A.*; Imaoka, Teruyoshi*; Nakashima, Kazuo*

Physics and Chemistry of Minerals, 47(6), p.29_1 - 29_18, 2020/06

 Times Cited Count:3 Percentile:17.15(Materials Science, Multidisciplinary)

Three non-metamict chevkinite-subgroup minerals, from Cape Ashizuri, Japan, Tangir Valley, Diamar District, Pakistan and Haramosh Mts., Skardu district, Pakistan, were studied by crystal chemical techniques. Powder X-ray diffraction and transmission electron microscopic observations confirmed well crystalline samples. Electron-microprobe analyses indicated the general composition known for chevkinite-(Ce). Site scattering values determined by single-crystal X-ray structure refinements suggested assignment of subordinate Nb to the octahedral M3 and M4 sites, minor Th to M1 for the Ashizuri sample and minor Mg to M1 for both samples from Pakistan. Neutron time-of-flight powder diffraction studies were applied to determine the Ti/Fe distribution among octahedral sites for all samples and Mossbauer spectroscopy served for the Fe valence assignment at the four octahedral sites. The dominant iron valence at M1 of the Haramosh sample is ferric whereas for samples Nos. 1 and 2 iron is ferrous.

165 (Records 1-20 displayed on this page)