Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Simple pretreatment method for tritium measurement in environmental water samples using a liquid scintillation counter

Nakasone, Shunya*; Yokoyama, Sumi*; Takahashi, Tomoyuki*; Ota, Masakazu; Kakiuchi, Hideki*; Sugihara, Shinji*; Hirao, Shigekazu*; Momoshima, Noriyuki*; Tamari, Toshiya*; Shima, Nagayoshi*; et al.

Plasma and Fusion Research (Internet), 16, p.2405035_1 - 2405035_5, 2021/02

Removal of impurities such as organic and other types of dissolved matters from environmental water samples is required for precise analysis of tritium with a liquid scintillation counting method. In general, a distillation method is a conventional one for tritium analysis in environmental water samples, but is a time-consuming process that takes 24 hours for removal of impurities. We have proposed a rapid pretreatment method for tritium analysis, that uses ion exchange resins. In this study, we performed batch experiments, to evaluate the effectiveness of the ion exchange resins on the tritium measurement. The results obtained demonstrated that removal of impurities in the sample water by ion exchange resins can be achieved during a short period of time (i.e., in 5 min).

Journal Articles

Preliminary investigation of pretreatment methods for liquid scintillation measurements of environmental water samples using ion exchange resins

Nakasone, Shunya*; Yokoyama, Sumi*; Takahashi, Tomoyuki*; Ota, Masakazu; Kakiuchi, Hideki*; Sugihara, Shinji*; Hirao, Shigekazu*; Momoshima, Noriyuki*; Tamari, Toshiya*; Shima, Nagayoshi*; et al.

Plasma and Fusion Research (Internet), 15, p.2405027_1 - 2405027_3, 2020/05

A quick preprocessing system for tritium analysis of environmental samples is important to judge environmental influence of tritium releases due to accident or tritium-handling facilities. Analysis of tritium in water samples with liquid scintillation counting method requires removal of impurities such as organic matter and ion species from water samples. Generally, a distillation method is adopted as a pretreatment of analysis for tritium; however, the distillation method is a time-consuming process. The aim of this study is to evaluate a rapid pretreatment method for tritium analysis with ion exchange resin. From batch and column experiments that used inland water and ion exchange resin, we confirmed removals of impurities of the water sample and that the removal of impurities was possible for a short time (by 5 minutes).

Journal Articles

Development of field estimation technique and improvement of environmental tritium behavior model

Yokoyama, Sumi*; Takahashi, Tomoyuki*; Ota, Masakazu; Kakiuchi, Hideki*; Sugihara, Shinji*; Hirao, Shigekazu*; Momoshima, Noriyuki*; Tamari, Toshiya*; Shima, Nagayoshi*; Atarashi-Andoh, Mariko; et al.

Plasma and Fusion Research (Internet), 14(Sp.2), p.3405099_1 - 3405099_4, 2019/06

The Large Helical Device of the National Institute for Fusion Science started D-D experiments in 2017. To ensure the safety of the facility, it is important to develop evaluation methods for environmental tritium transfer. Tritiated water (HTO) in atmosphere and soil is transferred to plants, and organically bound tritium (OBT) is formed by photosynthesis. Prediction of OBT formation is important, because OBT accumulates in plants and causes dose through ingestion. The objective of this study is to estimate environmental tritium transfer using a simple compartment model and practical parameters. We proposed a simple compartment model consisting of air-soil-plant components, and tried to validate the model by comparison with a sophisticated model, SOLVEG. In this study, we plan to add wet deposition to the model and obtain parameters from measurements of soil permeability and tritium concentrations in air, soil and plants. We also establish rapid pretreatment methods for OBT analysis.

Oral presentation

Improvement of environmental tritium behavior model; Calculation of OBT concentration in plants using the MOGRA code

Yokoyama, Sumi*; Takahashi, Tomoyuki*; Ota, Masakazu; Kakiuchi, Hideki*; Sugihara, Shinji*; Hirao, Shigekazu*; Momoshima, Noriyuki*; Tamari, Toshiya*; Shima, Nagayoshi*; Atarashi-Andoh, Mariko; et al.

no journal, , 

To ensure safety of fusion facilities, it is important to develop evaluation methods for tritium transfer in the environment. For estimation of tritium transfer in the terrestrial environment, we had developed a simple compartment model using the Migration Of GRound Additions (MOGRA) code. The model was composed by an air-soil-plant system. The target source terms were HT and HTO in the air. In addition, wet deposition was modeled by input of HTO to the system by rainfall. Tritium in the plant was divided into free water tritium (FWT) and organically bound tritium (OBT). The tritium concentration in the environmental medium was trial calculated for chronic and accidental HTO releases to the atmosphere, as preliminary calculation run of the model.

Oral presentation

Development of a new sampler for tritium measurement in the infiltrated soil water

Kakiuchi, Hideki*; Tanaka, Masahiro*; Fukutani, Satoshi*; Sugihara, Shinji*; Hirao, Shigekazu*; Momoshima, Noriyuki*; Tamari, Toshiya*; Shima, Nagayoshi*; Atarashi-Andoh, Mariko; Furukawa, Masahide*; et al.

no journal, , 

no abstracts in English

5 (Records 1-5 displayed on this page)
  • 1