Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Optimization and inference of bin widths for histogramming inelastic neutron scattering spectra

Tatsumi, Kazuyoshi; Inamura, Yasuhiro; Kofu, Maiko; Kiyanagi, Ryoji; Shimazaki, Hideaki*

Journal of Applied Crystallography, 55(3), p.533 - 543, 2022/06

 Times Cited Count:0 Percentile:0.01(Chemistry, Multidisciplinary)

A data-driven bin-width optimization for the histograms of measured data sets based on inhomogeneous Poisson processes was developed in a neurophysiology study [Shimazaki & Shinomoto (2007). Neural Comput. 19, 1503-1527], and a successive study [Muto et al. (2019). J. Phys. Soc. Jpn, 88, 044002] proposed its application to inelastic neutron scattering (INS) data. In the present study, the results of the method on experimental INS time-of-flight data collected under different measurement conditions from a copper single crystal are validated. The extrapolation of the statistics on a given data set to other data sets with different total counts precisely infers the optimal bin widths on the latter. The histograms with the optimized bin widths statistically verify two fine-spectral feature examples in the energy and momentum transfer cross sections: (i) the existence of the phonon band gaps; and (ii) the number of plural phonon branches located close to each other. This indicates that the applied method helps in the efficient and rigorous observation of spectral structures important in physics and materials science like novel forms of magnetic excitation and phonon states correlated to lattice thermal conductivities.

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

Oral presentation

Study on tritium confinement method using Li rod with Zr in very high temperature gas-cooled reactor; Hydrogen storage properties of Zr in high temperature (700$$sim$$850$$^{circ}$$C) conditions

Okamoto, Ryo*; Matsuura, Hideaki*; Ida, Yuma*; Koga, Yuki*; Katayama, Kazunari*; Otsuka, Teppei*; Goto, Minoru; Nakagawa, Shigeaki; Ishitsuka, Etsuo; Nagasumi, Satoru; et al.

no journal, , 

Currently, many researches to achieve DT nuclear-fusion power generation are under proceeding but the method to provide initial tritium loaded to fusion prototype reactor is not clear. The method of tritium production by using high temperature gas-cooled reactor (HTGR) was proposed. In this method, lithium rods are loaded to the reactor core of HTGR and tritium is produced by $$^{6}$$Li(n,$$alpha$$)T reaction. And the method to reduce the spilled tritium by using the lithium rod with zirconium layer was proposed. In this study, the experiments to evaluate the performance of hydrogen absorption in the zirconium layer were conducted under the temperature condition more than 700$$^{circ}$$C which is the normal operation condition for the very high temperature gas-cooled reactor (VHTR). The experimental result concerning solubility and diffusion factor of hydrogen in the zirconium layer will be presented and discussed.

Oral presentation

The Study on lithium rod test module and irradiation method for tritium production using high temperature gas-cooled reactor

Ida, Yuma*; Matsuura, Hideaki*; Nagasumi, Satoru; Okamoto, Ryo*; Koga, Yuki*; Katayama, Kazunari*; Otsuka, Teppei*; Goto, Minoru; Nakagawa, Shigeaki; Ishitsuka, Etsuo; et al.

no journal, , 

Large quantity of tritium is demanded for starting up of fusion reactor and engineering test using tritium for fusion blanket system. However, tritium is very rare and kg order of tritium must be produced artificially. Tritium production, by $$^{6}$$Li(n,$$alpha$$)T reaction using the high temperature gas-cooled reactor (HTGR), has been proposed. In this method, loading of Li rods into burnable poison (BP) holes in HTGR is considered. In this paper, the Li rod suited to the demand for the utilization in High Temperature engineering Test Reactor (HTTR) is designed, and tritium production and leakage from Li-rod capsule are evaluated by adjusting the thickness of LiAlO$$_{2}$$, alumina, and Zr layers. A scenario of irradiation test supposed to be conducted at HTTR for demonstration of the tritium production and containment performance of the Li rod is presented.

Oral presentation

Study on tritium confinement method using Li rod with Zr in HTGR; Hydrogen absorption properties of Zr in high temperature (700-900$$^{circ}$$C) conditions

Okamoto, Ryo*; Matsuura, Hideaki*; Ida, Yuma*; Koga, Yuki*; Suganuma, Takuro*; Katayama, Kazunari*; Otsuka, Teppei*; Goto, Minoru; Nakagawa, Shigeaki; Ishitsuka, Etsuo; et al.

no journal, , 

It has been proposed that lithium rods, which are cylindrical lithium compounds, are loaded into a HTGR and tritium for initial fusion reactors is produced by $$^{6}$$Li(n,$$alpha$$)T reaction. In this study, it was discussed that the lithium rods are covered with zirconium layers to prevent the produced tritium leak. The solubility and diffusion coefficient of hydrogen in zirconium were measured and the effectiveness of the zirconium layers on prevention of tritium leakage was estimated with the measured values. As a result, the tritium leakage ratio with the zirconium layers was estimated two orders lower than that without the zirconium layers, and hence it was considered that the zirconium layer is very effective on the prevention of the tritium leakage.

Oral presentation

Study on lithium rod module and irradiation method for tritium production using high temperature gas-cooled reactor

Koga, Yuki*; Matsuura, Hideaki*; Okamoto, Ryo*; Ida, Yuma*; Katayama, Kazunari*; Otsuka, Teppei*; Goto, Minoru; Nakagawa, Shigeaki; Ishitsuka, Etsuo; Nagasumi, Satoru; et al.

no journal, , 

Large quantity of tritium is demanded for starting up of fusion reactor and engineering test using tritium for fusion blanket system. Tritium production, by $$^{6}$$Li(n, $$alpha$$)T reaction using the high temperature gas-cooled reactor (HTGR), has been proposed and the method to produce tritium by loading the lithium rods as burnable poison in the reactor core has been studied. In this presentation, the design of lithium rods to be loaded to High Temperature engineering Test Reactor (HTTR) and its irradiation test plan to demonstrate tritium production are presented.

Oral presentation

Study on T production using high-temperature gas-cooled reactor for fusion reactors, 4; Feasibility study on irradiation test for tritium production capsule

Ishitsuka, Etsuo; Ho, H. Q.; Shimazaki, Yosuke; Nakagawa, Shigeaki; Goto, Minoru; Matsuura, Hideaki*; Otsuka, Teppei*; Katayama, Kazunari*; Iigaki, Kazuhiko

no journal, , 

As part of the development of tritium production using a high-temperature gas-cooled reactor for the initial loading of a fusion reactor, an irradiation test of a tritium production capsule has been studied. In this presentation, a feasibility study on irradiation test using JRR-3 will be introduced.

7 (Records 1-7 displayed on this page)
  • 1