Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 211

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluations of uncertainties in simulations of propagation of ultrahigh-energy cosmic-ray nuclei derived from microscopic nuclear models

Kido, Eiji*; Inakura, Tsunenori*; Kimura, Masaaki*; Kobayashi, Nobuyuki*; Nagataki, Shigehiro*; Shimizu, Noritaka*; Tamii, Atsushi*; Utsuno, Yutaka

Astroparticle Physics, 152, p.102866_1 - 102866_12, 2023/10

 Times Cited Count:1 Percentile:0.01(Astronomy & Astrophysics)

no abstracts in English

Journal Articles

PANDORA Project for the study of photonuclear reactions below $$A=60$$

Tamii, Atsushi*; Pellegri, L.*; S$"o$derstr$"o$m, P.-A.*; Allard, D.*; Goriely, S.*; Inakura, Tsunenori*; Khan, E.*; Kido, Eiji*; Kimura, Masaaki*; Litvinova, E.*; et al.

European Physical Journal A, 59(9), p.208_1 - 208_21, 2023/09

 Times Cited Count:1 Percentile:0.02(Physics, Nuclear)

no abstracts in English

Journal Articles

Estimation of external dose for wild Japanese macaques captured in Fukushima prefecture; Decomposition of electron spin resonance spectrum

Mitsuyasu, Yusuke*; Oka, Toshitaka; Takahashi, Atsushi*; Kino, Yasushi*; Okutsu, Kenichi*; Sekine, Tsutomu*; Yamashita, Takuma*; Shimizu, Yoshinaka*; Chiba, Mirei*; Suzuki, Toshihiko*; et al.

Radiation Protection Dosimetry, 199(14), p.1620 - 1625, 2023/09

 Times Cited Count:0 Percentile:0.01(Environmental Sciences)

We have been conducting dose assessments for Japanese macaques captured in Fukushima to reveal radiobiological effects on the low-dose expose animals. To accurately determine the external exposure dose, it is desirable to examine the analysis of the CO$$_{2}^{-}$$ radical intensity. We examined ESR spectra of teeth of 10 macaques captured in Fukushima by two spectrum-decomposition algorithms.

Journal Articles

Angular distribution of $$gamma$$ rays from a neutron-induced $$p$$-wave resonance of $$^{132}$$Xe

Okudaira, Takuya*; Tani, Yuika*; Endo, Shunsuke; Doskow, J.*; Fujioka, Hiroyuki*; Hirota, Katsuya*; Kameda, Kento*; Kimura, Atsushi; Kitaguchi, Masaaki*; Luxnat, M.*; et al.

Physical Review C, 107(5), p.054602_1 - 054602_7, 2023/05

 Times Cited Count:1 Percentile:68.16(Physics, Nuclear)

no abstracts in English

Journal Articles

Validation of evaluation model for analysis of steam reformer in HTGR hydrogen production plant

Ishii, Katsunori; Aoki, Takeshi; Isaka, Kazuyoshi; Noguchi, Hiroki; Shimizu, Atsushi; Sato, Hiroyuki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

Journal Articles

Development of safety design philosophy of HTTR-Heat Application Test Facility

Aoki, Takeshi; Shimizu, Atsushi; Noguchi, Hiroki; Kurahayashi, Kaoru; Yasuda, Takanori; Nomoto, Yasunobu; Iigaki, Kazuhiko; Sato, Hiroyuki; Sakaba, Nariaki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

The safety design philosophy is developed for the HTTR (High Temperature Engineering Test Reactor) heat application test facility connecting high temperature gas-cooled reactor (HTGR) and the hydrogen production plant. The philosophy was proposed to apply proven conventional chemical plant standards to the hydrogen production facility for ensuring public safety against anticipated disasters caused by high pressure and combustible gases. The present study also proposed the safety design philosophy to meet specific safety requirements identified to the nuclear facilities with coupling to the hydrogen production facility such as measures to ensure a capability of normal operation of the nuclear facility against a fire and/or explosion of leaked combustible material, and fluctuation of amount of heat removal occurred in the hydrogen production plant. The safety design philosophy will be utilized to establish its basic and detailed designs of the HTTR-heat application test facility.

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and hydrogen production facility, 1; Overview of the HTTR heat application test plan to establish high safety coupling technology

Nomoto, Yasunobu; Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and Hydrogen Production Facility, 2; Development plan for coupling equipment between HTTR and Hydrogen Production Facility

Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; Noguchi, Hiroki; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 6 Pages, 2023/05

Journal Articles

Measurement of the transverse asymmetry of $$gamma$$ rays in the $$^{117}$$Sn($$n,gamma$$)$$^{118}$$Sn reaction

Endo, Shunsuke; Okudaira, Takuya*; Abe, Ryota*; Fujioka, Hiroyuki*; Hirota, Katsuya*; Kimura, Atsushi; Kitaguchi, Masaaki*; Oku, Takayuki; Sakai, Kenji; Shima, Tatsushi*; et al.

Physical Review C, 106(6), p.064601_1 - 064601_7, 2022/12

 Times Cited Count:2 Percentile:52.69(Physics, Nuclear)

no abstracts in English

Journal Articles

A Study on accuracy of analysis of the radiation-induced component in the ESR spectra of teeth

Mitsuyasu, Yusuke*; Oka, Toshitaka; Takahashi, Atsushi*; Kino, Yasushi*; Okutsu, Kenichi*; Sekine, Tsutomu*; Yamashita, Takuma*; Shimizu, Yoshinaka*; Chiba, Mirei*; Suzuki, Toshihiko*; et al.

KEK Proceedings 2022-2, p.120 - 125, 2022/11

We investigate the effect of sample's anisotropy and measurement condition to obtain the higher reproducibility for the shape of the ESR spectrum and the intensity of CO$$_{2}^{-}$$ radical.

Journal Articles

Radiation exposure and oxidative stress status of wild Japanese macaques in the ex-evacuation zone of the Fukushima Daiichi Nuclear Power Plant accident

Ishikawa, Ryoya*; Suzuki, Masatoshi*; Kino, Yasushi*; Endo, Satoru*; Nakajima, Hiroo*; Oka, Toshitaka; Takahashi, Atsushi*; Shimizu, Yoshinaka*; Suzuki, Toshihiko*; Shinoda, Hisashi*; et al.

KEK Proceedings 2022-2, p.61 - 66, 2022/11

The balance between oxidative stress and antioxidant activity, which is a defense mechanism against oxidative stress, was investigated in the liver and bladder of wild Japanese macaques captured in Fukushima Prefecture. No significant induction of oxidative stress by exposure to environmental radionuclides after the Fukushima nuclear accident was observed, suggesting that the stress defense mechanism of the organism is activated in some organs.

JAEA Reports

Document collection of the Special Committee on HTTR Heat Application Test

Aoki, Takeshi; Shimizu, Atsushi; Iigaki, Kazuhiko; Okita, Shoichiro; Hasegawa, Takeshi; Mizuta, Naoki; Sato, Hiroyuki; Sakaba, Nariaki

JAEA-Review 2022-016, 193 Pages, 2022/08

JAEA-Review-2022-016.pdf:42.06MB

Aiming to realize a massive, cost-effective and carbon-free hydrogen production technology utilizing a high temperature gas cooled reactor (HTGR), Japan Atomic Energy Agency (JAEA) is planning a HTTR heat application test producing hydrogen with High Temperature Engineering Test Reactor (HTTR) achieved 950$$^{circ}$$C of the highest reactor outlet coolant temperature in the world. In the HTTR heat application test, it is required to establish its safety design realizing highly safe connection of a HTGR and a hydrogen production plant by the Nuclear Regulation Authority to obtain the permission of changes to reactor installation. However, installation of a system connecting the hydrogen production plant and a nuclear reactor, and its safety design has not been conducted so far in conventional nuclear power plant including HTTR in the world. A special committee on the HTTR heat application test, established under the HTGR Research and Development Center, considered a safety design philosophy for the HTTR heat application test based on an authorized safety design of HTTR in terms of conformity to the New Regulatory Requirements taking into account new considerable events as a result of the plant modification and connection of the hydrogen production plant. This report provides materials of the special committee such as technical reports, comments provided from committee members, response from JAEA for the comments and minutes of the committee.

JAEA Reports

Safety design philosophy of HTTR Heat Application Test Facility

Aoki, Takeshi; Shimizu, Atsushi; Iigaki, Kazuhiko; Okita, Shoichiro; Hasegawa, Takeshi; Mizuta, Naoki; Sato, Hiroyuki; Sakaba, Nariaki

JAEA-Technology 2022-011, 60 Pages, 2022/07

JAEA-Technology-2022-011.pdf:2.08MB

Japan Atomic Energy Agency is planning a High Temperature Engineering Test Reactor (HTTR) heat application test producing hydrogen with the HTTR which achieved the highest reactor outlet coolant temperature of 950$$^{circ}$$C in the world to realize a massive, cost-effective and carbon-free hydrogen production technology utilizing a high temperature gas cooled reactor (HTGR). In the HTTR heat application test, it is required to establish its safety design for coupling a hydrogen production plant to HTGR through the licensing by the Nuclear Regulation Authority (NRA). A draft of a safety design philosophy for the HTTR heat application test facility was considered taking into account postulated events due to the plant modification and coupling of the hydrogen production plant based on the HTTR safety design which was authorized through the safety review of the NRA against New Regulatory Requirements. The safety design philosophy was examined to apply proven conventional chemical plant standards to the hydrogen production plant for ensuring public safety against disasters caused by high pressure gases. This report presents a result of a consideration on safety design philosophies regarding the reasonability and condition to apply the High Pressure Gas Safety Act for the hydrogen production plant, safety classifications, seismic design classification, identification of important safety system.

Journal Articles

Detection limit of electron spin resonance for Japanese deciduous tooth enamel and density separation method for enamel-dentine separation

Oka, Toshitaka; Takahashi, Atsushi*; Koarai, Kazuma; Kino, Yasushi*; Sekine, Tsutomu*; Shimizu, Yoshinaka*; Chiba, Mirei*; Suzuki, Toshihiko*; Osaka, Ken*; Sasaki, Keiichi*; et al.

Journal of Radiation Research (Internet), 63(4), p.609 - 614, 2022/07

 Times Cited Count:1 Percentile:27.14(Biology)

Electron spin resonance (ESR) dosimetry is one of the most powerful tools for radiation dose reconstruction. The detection limit of this technique using human teeth is reported to be 56 mGy or 67 mGy; however, the absorbed dose of Fukushima residents after the Fukushima Daiichi Nuclear Power Plant (FNPP) accident was estimated to be lower than this detection limit. Our aim is to assess the absorbed radiation dose of children in Fukushima Prefecture after the accident; therefore, it is important to estimate the detection limit for their teeth. The detection limit for enamel of deciduous teeth of Japanese children separated by the mechanical method is estimated to be 115.0 mGy. The density separation method can effectively separate enamel from third molars of Japanese people. As we have collected thousands of teeth from children in Fukushima, the present technique may be useful to examine their external absorbed dose after the FNPP accident.

Journal Articles

Angular distribution of $$gamma$$ rays from the $$p$$-wave resonance of $$^{118}$$Sn

Koga, Jun*; Takada, Shusuke*; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Niinomi, Yudai*; Okudaira, Takuya*; et al.

Physical Review C, 105(5), p.054615_1 - 054615_5, 2022/05

 Times Cited Count:3 Percentile:66.85(Physics, Nuclear)

no abstracts in English

Journal Articles

Progress in conceptual design of a pool-type sodium-cooled fast reactor in Japan

Kato, Atsushi; Kubo, Shigenobu; Chikazawa, Yoshitaka; Miyagawa, Takayuki*; Uchita, Masato*; Suzuno, Tetsuji*; Endo, Junji*; Kubo, Koji*; Murakami, Hisatomo*; Uzawa, Masayuki*; et al.

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 11 Pages, 2022/04

The authors are carrying out conceptual design studies for a pool-type sodium-cooled fast reactor. There are main challenges such as measures against severe earthquake in Japan, thermal hydraulic in a reactor vessel (RV), a decay heat removal system design. When the JP-pool SFR of 650 MWe is installed in Japan, it shall be designed against the severe seismic conditions. Additionally, a newly three-dimensional seismic isolation system is under development.

Journal Articles

Improving the safety of the high temperature gas-cooled reactor "HTTR" based on Japan's new regulatory requirements

Hamamoto, Shimpei; Shimizu, Atsushi; Inoi, Hiroyuki; Tochio, Daisuke; Homma, Fumitaka; Sawahata, Hiroaki; Sekita, Kenji; Watanabe, Shuji; Furusawa, Takayuki; Iigaki, Kazuhiko; et al.

Nuclear Engineering and Design, 388, p.111642_1 - 111642_11, 2022/03

 Times Cited Count:2 Percentile:53.91(Nuclear Science & Technology)

Following the Fukushima Daiichi Nuclear Power Plant accident in 2011, the Japan Atomic Energy Agency adapted High-Temperature engineering Test Reactor (HTTR) to meet the new regulatory requirements that began in December 2013. The safety and seismic classifications of the existing structures, systems, and components were discussed to reflect insights regarding High Temperature Gas-cooled Reactors (HTGRs) that were acquired through various HTTR safety tests. Structures, systems, and components that are subject to protection have been defined, and countermeasures to manage internal and external hazards that affect safety functions have been strengthened. Additionally, measures are in place to control accidents that may cause large amounts of radioactive material to be released, as a beyond design based accident. The Nuclear Regulatory Commission rigorously and appropriately reviewed this approach for compliance with the new regulatory requirements. After nine amendments, the application to modify the HTTR's installation license that was submitted in November 2014 was approved in June 2020. This response shows that facilities can reasonably be designed to meet the enhanced regulatory requirements, if they reflect the characteristics of HTGRs. We believe that we have established a reference for future development of HTGR.

Journal Articles

Seismic classification of high temperature engineering test reactor

Ono, Masato; Shimizu, Atsushi; Ohashi, Hirofumi; Hamamoto, Shimpei; Inoi, Hiroyuki; Tokuhara, Kazumi*; Nomoto, Yasunobu*; Shimazaki, Yosuke; Iigaki, Kazuhiko; Shinozaki, Masayuki

Nuclear Engineering and Design, 386, p.111585_1 - 111585_9, 2022/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In the late 1980s during the design stage, the seismic classification of the high temperature engineering test reactor (HTTR) was formulated. Owing to the lack of operation experiences of the HTTR to sufficiently understand the safety characteristics of high temperature gas cooled reactors (HTGR) at that time, the seismic classification of commercial light water reactors (LWR) was applied to HTTR. However, the subsequent operation experiences and test results using HTTR made it clear that the seismic classification of commercial LWR was somewhat too conservative for the HTGR. As a result, Class S facilities were downgraded compared to the commercial LWR. Moreover, the validity of the new seismic classification is confirmed. In June 2020, the Nuclear Regulatory Authority approved that the result of the seismic classification conformed to the standard rules of the reactor installation change.

Journal Articles

Development of dose estimation method using wild animal teeth for low dose exposure

Mitsuyasu, Yusuke*; Oka, Toshitaka; Takahashi, Atsushi*; Koarai, Kazuma; Kino, Yasushi*; Okutsu, Kenichi*; Sekine, Tsutomu*; Yamashita, Takuma*; Shimizu, Yoshinaka*; Chiba, Mirei*; et al.

KEK Proceedings 2021-2, p.91 - 96, 2021/12

We examined whether the ESR dose estimation method could be applied to wild Japanese macaque. In this work, we investigated the enamel preparation protocol and the analytical method of the ESR spectra.

Journal Articles

Proposal of evaluation method of graphite incombustibility

Hamamoto, Shimpei; Ohashi, Hirofumi; Iigaki, Kazuhiko; Shimazaki, Yosuke; Ono, Masato; Shimizu, Atsushi; Ishitsuka, Etsuo

Proceedings of 2021 International Congress on Advances in Nuclear Power Plants (ICAPP 2021) (USB Flash Drive), 6 Pages, 2021/10

Since the HTGR has a large amount of graphite material in the core, it is necessary to assume an accident in which the reactor pressure boundary is damaged and air flows into the core. It is important to state that at the time of this accident, graphite does not burn and the accident does not develop due to the heat of oxidation reaction. Therefore, in this study, in order to evaluate the combustibility of graphite materials, we propose a method to compare the calorific value and heat removal amount of the material. When calculating the calorific value, the structural material of HTTR, a high-temperature gas reactor in Japan, was used as a reference. The amount of air in contact with the structural material is a value determined from the chimney effect. The amount of heat release is the sum of convection and radiation. As a result of comparing the heat generation amount with the heat removal amount, it was shown that the heat release amount was always larger than the heat generation amount. This result shows that the graphite material does not depend on the state at the time of the air inflow accident, the temperature decreases and does not burn. It is important to clearly explain the non-flammability of graphite materials when deciding how to deal with severe accidents in HTGRs. This quantitative evaluation method based on a simple theory is considered useful.

211 (Records 1-20 displayed on this page)