Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Design and fabrication of novel photonic crystal waveguide consisting of Si-ion implanted SiO$$_{2}$$ layers

Umenyi, A. V.*; Hommi, Masashi*; Kawashiri, Shinya*; Shinagawa, Teruyoshi*; Miura, Kenta*; Hanaizumi, Osamu*; Yamamoto, Shunya; Inoue, Aichi; Yoshikawa, Masahito

Key Engineering Materials, 459, p.168 - 172, 2011/04

A new type of two-dimensional photonic crystal (2-D PhC) waveguide was designed using finite difference time domain method to operate at a wavelength of 1.55 $$mu$$m applicable to optical fiber-communication systems. We estimated that a triangular-lattice 2-D PhC structure formed by air holes with a diameter of 465 nm and a period of 664 nm suit our purpose. To form a core of the waveguide, Si ions were implanted into a SiO$$_{2}$$ layer by using a 400-kV ion implanter. The implantation energy was 80 keV and the implantation amount was 1$$times$$10$$^{17}$$ ions/cm$$^{2}$$. The electron beam resist was spin-coated on a substrate and the designed pattern was written lithographically in the resist using Electron Beam. Atomic force microscope measurements revealed that the diameter and the period of air holes of the waveguide were 466 and 666 nm. These values were nearly equal to the designed ones. We thus succeeded in fabricating 2-D PhC waveguides in a Si-ion-implanted SiO$$_{2}$$ layer.

Oral presentation

Fabrication and evaluation of light-emitting SiO$$_{2}$$ substrates implanted with Ge ions

Shinagawa, Teruyoshi*; Umenyi, A. V.*; Kikuchi, Shusuke*; Aiba, Mizuki*; Inada, Kazuki*; Miura, Kenta*; Hanaizumi, Osamu*; Yamamoto, Shunya; Kawaguchi, Kazuhiro; Yoshikawa, Masahito

no journal, , 

Light emission between ultraviolet and blue from SiO$$_{2}$$ substrates implanted with Ge ions in comparatively shallow depth ($$sim$$100 nm) has been reported. In this paper, we report the photoluminescence (PL) properties of SiO$$_{2}$$ substrates implanted with Ge ions deeper than previous works ($$sim$$200 nm depth) in order to enlarge the spot size of the photonic crystals waveguides. Ge ions were implanted into an SiO$$_{2}$$ substrate with 350 keV, and the implantation amount was 1$$times$$10$$^{17}$$ ions/cm$$^{2}$$. PL peaks around a wavelength of 400 nm were observed. Stronger PL peaks were measured after annealing (900 $$^{circ}$$C), which confirmed an effect of improving the emission intensity by the annealing process. Though Ge ions were implanted more deeply than the earlier reported depth, similar results were confirmed. The expectation for a new light-emitting waveguide device that combines Ge-ion-implanted SiO$$_{2}$$ substrates with photonic crystal characteristics has risen.

2 (Records 1-2 displayed on this page)
  • 1