Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Wakui, Takashi; Wakai, Eiichi; Naoe, Takashi; Kogawa, Hiroyuki; Haga, Katsuhiro; Takada, Hiroshi; Shintaku, Yohei*; Li, T.*; Kanomata, Kenichi*
Choompa Techno, 30(5), p.16 - 20, 2018/10
A mercury target vessel has been used for the spallation neutron source at J-PARC. It has a complicated multi-layered structure composed of a mercury target and a surrounding double-walled water shroud, which is assembled with thin plates (minimum thickness of 3 mm) by welding. Thus, welding inspection during the manufacturing process is important. We investigated the applicability of new ultrasonic inspections using specimens (thickness of 3 mm) with defects to improve the accuracy of welding inspection for the mercury target vessel. Immersion ultrasonic testing using a probe (frequency of 50 MHz) could detect a spherical defect with a diameter of 0.2 mm. The size was smaller than target value of 0.4 mm. The length of unwelded region estimated using the phased array ultrasonic testing corresponded with the actual length (0.8 - 1.5 mm).
Wakui, Takashi; Wakai, Eiichi; Naoe, Takashi; Shintaku, Yohei*; Li, T.*; Murakami, Kazuya*; Kanomata, Kenichi*; Kogawa, Hiroyuki; Haga, Katsuhiro; Takada, Hiroshi; et al.
Journal of Nuclear Materials, 506, p.3 - 11, 2018/08
Times Cited Count:3 Percentile:34.06(Materials Science, Multidisciplinary)The mercury target vessel is designed as multi-walled structure with thin wall (min. 3 mm), and assembled by welding. In order to estimate the structural integrity of the vessel, it is important to measure the defects in welding accurately. For nondestructive tests of the welding, radiographic testing is applicable but it is difficult to detect for some defect shapes. Therefore it is effective to do ultrasonic testing together with it. Because ultrasonic methods prescribed in JIS inspect on the plate with more than 6 mm in thickness, these methods couldn't be applied as the inspection on the vessel with thin walls. In order to develop effective method, we carried out measurements using some testing method on samples with small defect whose size is specified. In the case of the latest phased array method, measured value agreed with actual size. It was found that this method was applicable to detect defects in the thin-walled structure for which accurate inspection was difficult so far.
Wakai, Eiichi; Wakui, Takashi; Kogawa, Hiroyuki; Naoe, Takashi; Shoji, Masayuki; Ishikawa, Kazuyoshi; Yasu, Kazumi*; Teshigawara, Makoto; Hanano, Kohei; Narui, Norio; et al.
no journal, ,
no abstracts in English