Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Shibata, Takanori*; Okoshi, Kiyonori; Ueno, Akira; Ikegami, Kiyoshi*; Shinto, Katsuhiro; Nammo, Kesao*; Kawai, Isao*; Oguri, Hidetomo
Kasokuki, 21(2), p.94 - 100, 2024/07
In the recent J-PARC user operation from Nov. 10th, 2022 to Jun. 22nd, 2023, continuous operation of 4,412 hours with hydrogen negative ion (H ion) beam current up to 60 mA was achieved by J-PARC radio frequency (RF) H ion source. This was also the first time to supply H ion beam to the linac in the yearly J-PARC user operation term by a single ion source (w/o ion source exchange). To satisfy the requirements of the further upgrade in J-PARC, a soundness evaluation of the present ion source components has been performed. Furthermore, the RF ion source with a newly manufactured RF antenna coil has been under development.
Shibata, Takanori*; Shinto, Katsuhiro; Nakano, Haruhisa*; Hoshino, Kazuo*; Miyamoto, Kenji*; Okoshi, Kiyonori; Nammo, Kesao*; Ikegami, Kiyoshi*; Kawai, Isao*; Oguri, Hidetomo; et al.
Journal of Physics; Conference Series, 2743, p.012007_1 - 012007_5, 2024/05
Oscillation of the negative hydrogen ion (H) beam phase space in Radio Frequency (RF) ion source is investigated by a simple 3D Particle-In-Cell (PIC) model which takes into account the transport processes of electron, proton and H in the extraction region. The calculation domain is in vicinity of the single beam aperture in J-PARC ion source configuration. In order to understand relation between the plasma density oscillation and the extracted H beam characteristics, the input electron and proton fluxes from the driver region are varied parametrically with the 1st and the 2nd harmonics of the J-PARC RF frequency (2 or 4 MHz). The numerical results give an idea to the main physical processes between the oscillations of the plasma parameters and the extracted H ion trajectories in the different RF phases. Countermeasures to reduce the oscillation mechanisms are also discussed in the presentation.
Shinto, Katsuhiro; Shibata, Takanori*; Okoshi, Kiyonori; Nammo, Kesao*; Kawai, Isao*; Ikegami, Kiyoshi*
Journal of Physics; Conference Series, 2743, p.012023_1 - 012023_5, 2024/05
We have been conducting the test of a new J-PARC-made internal antenna for the J-PARC RF-driven cesiated H ion source. After the development of the first J-PARC-made antenna, the composition of the porcelain enamel coating of the antenna was changed because we were afraid of the outgassing of the impurities from the previous antenna coating. During the test of high-density plasma production by the new antenna, we monitored the outgassing characteristics of the new antenna by measuring mass spectrometry and optical spectrum analysis. It is confirmed that no remarkable impurities were emitted from the new antenna. We also carried out the H beam extraction and measured the H beam characteristics by using the new antenna. It is found that the emittances of the H beam extracted from the J-PARC RF-driven cesiated H ion source by using the new antenna were similar to those in the case by using the SNS-made antenna. To accelerate the endurance test of the new antenna, we applied the antenna for the high-density plasma production to the 5% duty factor (1 ms pulse width with 50 Hz repetition rate) with the 2 MHz RF input power of approximately 60 kW, whose values were much higher than those in the J-PARC nominal operation; 0.8 ms pulse width with 25 Hz repetition rate (the duty factor of 2%) with the RF input power of approximately 30 kW. This presentation shows the results of the characteristics of the new J-PARC-made antenna and discusses the feasibility of the new antenna for use in the J-PARC accelerator operation.
Wada, Motoi*; Shibata, Takanori*; Shinto, Katsuhiro
Journal of Physics; Conference Series, 2743, p.012031_1 - 012031_5, 2024/05
An internal antenna type RF driven negative hydrogen (H) ion source supplies beams to the J-PARC accelerator facility. The H ion beam current exhibits high stability, while it fluctuates with less than 5% amplitude of the DC current when a Faraday cup measures the current extracted from the source mounted on a test stand. Two frequencies are identified as the main oscillation components, 2 MHz and 4 MHz which are the driving RF frequency and the second harmonics, respectively. The amplitude levels of these components appear larger as parts of the beam directing specific angles passing through a slit are detected. A possible reason for observing a small amplitude oscillation in the total beam intensity is the averaged phase-shift of the local beam depending upon the position of the H ion production and the succeeding trajectory reaching the Faraday cup. To confirm if the phase-shift is the main reason for diminishing the oscillation amplitude for the total beam, the phase-shift between the 2 MHz and 4 MHz components were measured for beams passing through a 0.1 mm slit coupled to a Faraday cup having a 0.1 mm entrance slit. The result indicated the phase-shift changed substantially depending upon the position, but no simple model can explain the measured spatial distribution of the phase-shift. Further attempts will be made to clarify the beam dynamics relevant to the H ion beam transport including the measurements of the beam current phase-shift with respect to the RF antenna current, and the time evolution of Balmer- light emission.
Wada, Motoi*; Shibata, Takanori*; Shinto, Katsuhiro
Journal of Instrumentation (Internet), 19(2), p.C02019_1 - C02019_7, 2024/02
A negative hydrogen (H) ion source with the plasma excited by 2 MHz radio frequency (RF) power serves as the beam source for the Japan Proton Accelerator Research Complex (J-PARC). We have been studying the H ion beam intensity modulation at the frequency of plasma excitation RF power since we have found the beam carried the fluctuation at 2 MHz after the RFQ linac. Higher frequency components were found present in the peripheral region of the plasma, and the highspeed emittance measurement system developed to clarify the change of the beam in phase space revealed the existence of diverging halo component oscillating at 2 MHz. The fluctuation amplitude at the beam center was less than about 20%, while there was observed the component oscillating at 4 MHz. The 4 MHz component seems related to the production of high energy electrons by the RF antenna as the intensity of the RF induction electric field takes the maximum twice in each cycle. On the other hand, the direction of RF magnetic field and the direction of electron flow change at 2 MHz frequency. Thus, H ion formation mechanisms in the ion source can be estimated through precisely characterizing the extracted H ion beam. The H ion beam fluctuation can be observed in the H ion current measured with a Faraday cup. Before introducing Cs, the measured beam current showed the fluctuation at 4 MHz frequency when the axial magnetic field correction (AMFC) coil was turned off. The main fluctuation frequency changed to 2 MHz as the voltage to excite the coil to induce AMFC was increased. Injection of Cs into the ion source increased the H ion current, while the 4 MHz component nearly disappeared for both cases of AMFC on and AMFC off. Possible mechanisms responsible for diminishing 4 MHz fluctuation component by Cs injections are discussed.
Shibata, Takanori*; Shinto, Katsuhiro; Nammo, Kesao*; Okoshi, Kiyonori; Ikegami, Kiyoshi*; Oguri, Hidetomo; Ishida, Masaki*; Wada, Motoi*
Journal of Instrumentation (Internet), 19(1), p.C01009_1 - C01009_8, 2024/01
From Nov. 2020 to Apr. 2021, the continuous ion source operation for 3,651 hours (5 months) was achieved. As the lifetime of the RF ion source is mainly limited by failure on the enamel coating of the RF antenna, detailed evaluation of the antenna surface is required to ensure feasibility of the further extension of the operation time. In the present study, surface discoloration on the RF antenna coil observed after the 5 months operation is investigated by application of digital microscope and SEM/EDS analyses. The material mapping and the line spectrum obtained by the EDS analysis show that depositions of the sputtered source chamber wall materials and the injected cesium on to the enamel coating are the most possible candidate for the discoloration. The dimension measurements of the RF antenna thickness before and after the long-term operation support the idea that the discoloration is due to the deposited materials and hence insulation of the RF antenna coil by enamel coating is maintained. The emittance measurement after the operation also shows that the RF plasma and the beam formations are not affected by the deposition on the antenna.
Shinto, Katsuhiro; Shibata, Takanori*; Wada, Motoi*
Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.392 - 395, 2023/11
Negative hydrogen (H) ion sources which are used at high-intensity proton accelerator facilities such as J-PARC or neutral beam injection system for plasma heating in the fusion devices such as ITER produce plasmas by using RF sources driving with the frequency of 1-2 MHz. We have shown that the H beams extracted from the RF-driven H ion source with the frequency of several MHz have some fluctuations with the frequency of the fundamental and second harmonics. The reason is that the high plasma density is produced in the ion source with the low driving frequency. Therefore, we propose the driving RF frequency same as the RF sources with that of 324 MHz in the J-PARC linac, which is much higher than the ion plasma frequency, is used for producing the plasma to suppress the H beam fluctuations. As a first step, we performed a design of a matching circuit for the higher frequency driven H ion source. We present the background for decision of a new RF amplifier with much higher frequency and the design results.
Shinto, Katsuhiro; Okoshi, Kiyonori; Shibata, Takanori*; Nammo, Kesao*; Kawai, Isao*; Ikegami, Kiyoshi*; Ueno, Akira
Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.928 - 931, 2023/11
J-PARC initiated the operation of the high-intensity rf-driven negative hydrogen (H) ion source in 2014 autumn. The ion source produces the H beam with the beam current of 60 mA and the beam energy of 50 keV in order to inject the H beam into the 3 GeV RCS with the beam current of 50 mA and the beam energy of 400 MeV from the J-PARC linac. We have achieved the longest continuous operation time of 4001 hours in the previous (2021/2022) campaign. The 2022/2023 campaign was the first time that the continuous operation of the H ion source without any exchanges of the ion source until the end of the campaign was examined. We present the operation status of the J-PARC H ion source in this campaign as well as the status of the J-PARC-made internal antenna test.
Shinto, Katsuhiro; Shibata, Takanori*; Okoshi, Kiyonori; Nammo, Kesao*; Ikegami, Kiyoshi*; Oguri, Hidetomo
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.675 - 679, 2023/01
In J-PARC, we have been conducting the test of a J-PARC-made internal antenna in order to establish the production method and understand the beam characteristics of the antenna. At this time, we investigated the outgas characteristics during the production of a high-density plasma by using the J-PARC-made antenna. It is confirmed that no remarkable impurities are emitted from the antenna by a residual gas analysis using a quadrupole mass analyzer installed downstream the ion source and a spectroscopic analysis of the plasma in the ion source. It is found that the emittances of the H beam extracted from the J-PARC radio-frequency H ion source by using the antenna was similar as those in case by using SNS antenna.
Shibata, Takanori*; Ishida, Masaki*; Nammo, Kesao*; Ikegami, Kiyoshi*; Okoshi, Kiyonori; Shinto, Katsuhiro; Oguri, Hidetomo
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.863 - 867, 2023/01
Continuous operation duration of the J-PARC Radio Frequency (RF) ion source has been extended step by step these years for the goal to supply stable beam during the entire period of J-PARC user operation (around 7 months) each year. A 3651 hours (5 months) continuous ion source operation has been achieved from Nov. 2020 to Apr. 2021. As the lifetime of the ion source is mainly limited by failure on the RF antenna coil, detailed evaluation of the antenna surface condition is required to ensure the feasibility of the further extension of the operation time. In the present study, dimension measurements and SEM/EDS analyses were applied to understand the surface discoloration of the RF antenna. The discoloration after the long-term continuous operation is due to deposition of injected cesium (for H surface production process) and of stainless used steel (Fe, Cr, Ni) from the ion source components sputtered by plasma. The results show that the enamel coating of the RF antenna has not worn out in the long-term continuous operation for several months and, hence, extension of the ion source continuous operation duration can be extended.
Shibata, Takanori*; Okoshi, Kiyonori; Shinto, Katsuhiro; Nammo, Kesao*; Ikegami, Kiyoshi*; Oguri, Hidetomo
Journal of Physics; Conference Series, 2244, p.012041_1 - 012041_5, 2022/04
Times Cited Count:1 Percentile:69.82(Engineering, Electrical & Electronic)In the J-PARC user operation from Nov. 2020 - Apr. 2021, continuous operation of J-PARC Radio Frequency (RF) negative hydrogen ion (H) source up to 3,651 hours (5 months) has been achieved. The ion source was operated with the output H current of 60 mA, the duty factor (for plasma generation) 2% and the input RF power up to 30 kW. After the operation, phase space diagrams at the Radio Frequency Quadrupole (RFQ) entrance were measured by the emittance monitor at the ion source test stand (IS-TS) under the same operation condition as in the J-PARC Linac. Comparison of the phase spaces and the beam emittances between the ion sources in the present and the previous operations shows slight difference. From the direct observation of the antenna coil, no exhaustion or the decrease in the thickness of the enamel coating of the coil have been confirmed. The results indicate the possibility of the next goal of the long-run up to 7 months, which is the same as the full duration of the J-PARC user operation in 1 year.
Shinto, Katsuhiro; Shibata, Takanori*; Wada, Motoi*
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.230 - 233, 2021/10
In most proton accelerator facilities such as J-PARC, SNS, CERN, a H ion source equipped with a 2-MHz rf driver for plasma generation produces H beams. We have reported H beam characteristics extracted from the J-PARC rf-driven high-intensity H ion source. We have been developing an emittance measurement apparatus equipped with a highly time-resolved data acquisition system in order to observe fluctuation of the beam emittance in association with the frequency of the rf driver. By using this apparatus, we found that the beam emittance is fluctuated with the frequency with the rf driver and higher harmonics. We will show some obtained results of the emittance fluctuation.
Shibata, Takanori*; Hirano, Koichiro; Hirane, Tatsuya*; Shinto, Katsuhiro; Hayashi, Naoki; Oguri, Hidetomo
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.417 - 421, 2021/10
In J-PARC linac, the operation of an rf-driven high-intensity H ion source was initiated in 2014. For plasma ignition, the 2-MHz rf amplifier outputs the power of several tens kW. However the rf amplifier for the ion source and those for the accelerating cavities have not been synchronized. As a result, the wave hights in the beam waveforms were different in shot by shot. Therefore, we have developed an synchronization system between the rf system for the ion source and those for the cavity systems and succeeded the same wave hights in the waveforms.
Sarmento, T.*; Wnderlich, D.*; Fantz, U.*; Friedl, R.*; Rauner, D.*; Tsumori, Katsuyoshi*; Shenjin, L.*; Chen, W.*; Bollinger, D.*; Oguri, Hidetomo; et al.
AIP Conference Proceedings 2373, p.110001_1 - 110001_18, 2021/08
In preparation for NIBS 2020 various labs prepared reference sheets containing key information about their ion sources and the machines that they serve. The contents of the reference sheets have been formatted and edited into this paper for posterity and ease of access.
Shibata, Takanori*; Shinto, Katsuhiro; Wada, Motoi*; Oguri, Hidetomo; Ikegami, Kiyoshi*; Okoshi, Kiyonori; Nammo, Kesao*
AIP Conference Proceedings 2373, p.050002_1 - 050002_9, 2021/08
Oscillation of emittance and Twiss parameters in the negative ion beam from the J-PARC 2-MHz RF ion source is measured by applications of a double-slit emittance monitor located at the RFQ (Radio Frequency Quadrupole) entrance. The emittance monitor is equipped with a newly-developed 60 MS/s data acquisition system, so that beam current oscillation in a few MHz can be observed with enough time resolution. From the measurement, it is shown that the beam phase space consists of (1) a DC component in the beam core, (2) a 2-MHz oscillating component which takes place both in the beam core and the halo and (3) a doubled RF frequency (4 MHz) oscillation which slightly exists in the beam halo. The major component is the 2-MHz component, which resultantly decides the beam emittance oscillation frequency. A typical value of the beam emittance in the present experiment is 0.34 mm-mrad, while the amplitude of the 2 MHz oscillation is around 0.04 mm-mrad. The results indicate that the high-frequency oscillation component occupying about ten-percent of the beam from the RF source travels a few meters passing through a magnetic lens focusing system.
Ueno, Akira; Okoshi, Kiyonori; Ikegami, Kiyoshi*; Takagi, Akira*; Shinto, Katsuhiro; Oguri, Hidetomo
AIP Conference Proceedings 2373, p.040002_1 - 040002_8, 2021/07
On 2018, the stable operation of the J-PARC cesiated RF-driven H ion source (IS) with a 62 keV 100 mA beam, whose emittances were suitable for the radio-frequency quadrupole LINAC (RFQ), was reported. In the J-PARC IS operation, the stable plasma production with a 50 kW 2 MHz RF power for more than 3 months, an RF power efficiency higher than 2.4 mA/kW and the possibility of the space charge limited beam intensity pulling up by increasing the extraction and acceleration voltages were proven. On the other hand, the withstand voltage for the stable operation with an RF plasma production of the present 2 MHz matching circuit and the high voltage power supply was measured as about 66 kV. In the operation with the presently highest beam energy of 65 keV, a 110 mA beam with emittances suitable for the RFQ was stably produced. Since 102.5 mA of the beam was measured inside the emittances used for the RFQ design, the next generation 100 mA LINAC will be possible with the IS.
Shibata, Takanori*; Ikegami, Kiyoshi*; Nammo, Kesao*; Liu, Y.*; Otani, Masashi*; Naito, Fujio*; Shinto, Katsuhiro; Okoshi, Kiyonori; Okabe, Kota; Kondo, Yasuhiro; et al.
JPS Conference Proceedings (Internet), 33, p.011010_1 - 011010_6, 2021/03
Together with the intensity upgrade in J-PARC Linac Front-End, improvement of RFQ transmission ratio is an important task. This RFQ transmission ratio depends strongly upon the solenoid current settings in the low energy beam transport line (LEBT). In the present study, high beam current cases (72 mA and 88 mA H beam current in LEBT) are investigated at a test-stand. Phase space distributions of the H beam particles at the RFQ entrance are measured and compared with numerical results by Particle-In-Cell simulation. As a result, it has been clarified that a 15 mm orifice for differential pumping of H gas coming from the ion source plays a role as a collimator in these beam conditions. This leads to change the beam emittance and Twiss parameters at the RFQ entrance. Especially in the condition with the beam current up to 88 mA in LEBT, the beam collimation contributes to optimize the phase space distribution to the RFQ acceptance with relatively low solenoid current settings. As a higher solenoid current setting would be necessary to suppress the beam expansion due to high space charge effect, these results suggest that current-saving of the solenoids can be possible even in the higher beam intensity operations.
Oguri, Hidetomo; Okoshi, Kiyonori; Shinto, Katsuhiro; Shibata, Takanori*; Nammo, Kesao*; Ikegami, Kiyoshi*; Takagi, Akira*; Ueno, Akira
JPS Conference Proceedings (Internet), 33, p.011008_1 - 011008_7, 2021/03
A cesiated RF-driven negative hydrogen ion source was initiated to operate in September, 2014 in response to the need for upgrading J-PARC's linac beam current. The ion source mainly comprises a stainless-steel plasma chamber, a beam extractor and a large vacuum chamber equipped with two turbo molecular pumps, each having the pumping speed of 1500 L/s, for differential pumping. The user operation was started with the beam current of 33 mA from the ion source. We gradually increased both beam current and continuous operation time of the ion source. In July, 2018 (Run#79), approximately 2,200 hours operation was achieved with the typical beam current, pulse length and repetition rate of 47 mA, 300 s and 25 Hz, respectively. Since October, 2018 (Run#80), the ion source has been delivering a nominal beam current of approximately 60 mA.
Wada, Motoi*; Shinto, Katsuhiro; Shibata, Takanori*; Sasao, Mamiko*
Review of Scientific Instruments, 91(1), p.013330_1 - 013330_5, 2020/01
Times Cited Count:4 Percentile:27.22(Instruments & Instrumentation)The ions are extracted from an ion source through a plasma sheath where a low frequency electromagnetic induction drives transport of charged particles including the target ions. High frequency alternating current commonly excites plasmas in sources for negative hydrogen (H) ions at a frequency in the MHz range. A high-speed beam current monitor system coupled to a narrow entrance slit enabled the investigation of the special distribution of the AC component intensity of the H ion beam extracted from an ion source driven by a 2 MHz radio frequency (RF) power. The distribution showed a smaller oscillation of the beam at the center.
Kondo, Yasuhiro; Hirano, Koichiro; Ito, Takashi; Kikuzawa, Nobuhiro; Kitamura, Ryo; Morishita, Takatoshi; Oguri, Hidetomo; Okoshi, Kiyonori; Shinozaki, Shinichi; Shinto, Katsuhiro; et al.
Journal of Physics; Conference Series, 1350, p.012077_1 - 012077_7, 2019/12
Times Cited Count:1 Percentile:51.67(Physics, Particles & Fields)We have upgraded a 3-MeV linac at J-PARC. The ion source is same as the J-PARC linac's, and the old 30-mA RFQ is replaced by a spare 50-mA RFQ, therefore, the beam energy is 3 MeV and the nominal beam current is 50 mA. The main purpose of this system is to test the spare RFQ, but also used for testing of various components required in order to keep the stable operation of the J-PARC accelerator. The accelerator has been already commissioned, and measurement programs have been started. In this paper, present status of this 3-MeV linac is presented.