Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Progress in R&D efforts on the energy recovery linac in Japan

Sakanaka, Shogo*; Ago, Tomonori*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; Harada, Kentaro*; Hiramatsu, Shigenori*; Honda, Toru*; et al.

Proceedings of 11th European Particle Accelerator Conference (EPAC '08) (CD-ROM), p.205 - 207, 2008/06

Future synchrotron light sources based on the energy-recovery linacs (ERLs) are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. Our Japanese collaboration team is making efforts for realizing an ERL-based hard X-ray source. We report recent progress in our R&D efforts.

Journal Articles

Design study of the compact ERL optics

Shiraga, Takashi*; Nakamura, Norio*; Harada, Kentaro*; Shimada, Miho*; Sakanaka, Shogo*; Kobayashi, Yukinori*; Hajima, Ryoichi

Proceedings of 5th Annual Meeting of Particle Accelerator Society of Japan and 33rd Linear Accelerator Meeting in Japan (CD-ROM), p.589 - 591, 2008/00

An energy recovery linac (ERL) is expected to be the next generation synchrotron radiation source that can provide synchrotron radiation of higher brilliance, shorter pulse and higher coherence than the existing third-generation synchrotron light sources. The compact ERL is planned to be constructed in order to solve some problems in achievement of such synchrotron radiation and to confirm advantages of ERLs. We studied and optimized the compact ERL optics to achieve subpico-second bunch generation and efficient energy recovery and to transport the beam to the beam dump without serious beam loss. The design study of the compact ERL optics was done by using the simulation code Elegant. As a result, we succeeded in obtaining a 40-fs bunch with a charge of 77 pC just after the first TBA cell. Furthermore we could suppress the maximum beam size to less than 8.5 mm even after deceleration.

Journal Articles

Introduction to plasma fusion energy

Takamura, Shuichi*; Kado, Shinichiro*; Fujii, Takashi*; Fujiyama, Hiroshi*; Takabe, Hideaki*; Adachi, Kazuo*; Morimiya, Osamu*; Fujimori, Naoji*; Watanabe, Takayuki*; Hayashi, Yasuaki*; et al.

Kara Zukai, Purazuma Enerugi No Subete, P. 164, 2007/03

no abstracts in English

Oral presentation

Electron beam optics in the compact ERL

Hajima, Ryoichi; Shiraga, Takashi*; Nakamura, Norio*; Harada, Kentaro*; Shimada, Miho*; Sakanaka, Shogo*; Kobayashi, Yukinori*

no journal, , 

no abstracts in English

Oral presentation

Design study of beam optics in the compact ERL

Hajima, Ryoichi; Shiraga, Takashi*; Harada, Kentaro*; Shimada, Miho*; Sakanaka, Shogo*; Kobayashi, Yukinori*; Nakamura, Norio*

no journal, , 

no abstracts in English

5 (Records 1-5 displayed on this page)
  • 1