Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Elekes, Z.*; Juhsz, M. M.*; Sohler, D.*; Sieja, K.*; Yoshida, Kazuki; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review C, 106(6), p.064321_1 - 064321_10, 2022/12
Times Cited Count:0 Percentile:0.02(Physics, Nuclear)The low-lying level structure of V and
V was investigated for the first time. The neutron knockout reaction and inelastic proton scattering were applied for
V while the neutron knock-out reaction provided the data for
V. Four and five new transitions were determined for
V and
V, respectively. Based on the comparison to our shell-model calculations using the Lenzi-Nowacki-Poves-Sieja (LNPS) interaction, three of the observed
rays for each isotope could be placed in the level scheme and assigned to the decay of the first 11/2
and 9/2
levels. The (
,
) excitation cross sections for
V were analyzed by the coupled-channels formalism assuming quadrupole plus hexadecapole deformations. Due to the role of the hexadecapole deformation,
V could not be unambiguously placed on the island of inversion.
Elekes, Z.*; Kripk,
*; Sohler, D.*; Sieja, K.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Doornenbal, P.*; Obertelli, A.*; Authelet, G.*; Baba, Hidetada*; et al.
Physical Review C, 99(1), p.014312_1 - 014312_7, 2019/01
Times Cited Count:7 Percentile:66.22(Physics, Nuclear)The nuclear structure of the Ni nucleus was investigated by (
,
) reaction using a NaI(Tl) array to detect the deexciting prompt
rays. A new transition with an energy of 2227 keV was identified by
and
coincidences. Our shell-model calculations using the Lenzi, Nowacki, Poves, and Sieja interaction produced good candidates for the experimental proton hole states in the observed energy region, and the theoretical cross sections showed good agreement with the experimental values. Although we could not assign all the experimental states to the theoretical ones unambiguously, the results are consistent with a reasonably large Z = 28 shell gap for nickel isotopes in accordance with previous studies.
Shand, C. M.*; Podolyk, Zs.*; G
rska, M.*; Doornenbal, P.*; Obertelli, A.*; Nowacki, F.*; Otsuka, T.*; Sieja, K.*; Tostevin, J. A.*; Tsunoda, T.*; et al.
Physics Letters B, 773, p.492 - 497, 2017/10
Times Cited Count:22 Percentile:87.96(Astronomy & Astrophysics)Sahin, E.*; Doncel, M.*; Sieja, K.*; De Angelis, G.*; Gadea, A.*; Quintana, B.*; Grgen, A.*; Modamio, V.*; Mengoni, D.*; Valiente-Dob
n, J. J.*; et al.
Physical Review C, 91(3), p.034302_1 - 034302_9, 2015/03
Times Cited Count:23 Percentile:82.56(Physics, Nuclear)Orlandi, R.; Mcher, D.*; Raabe, R.*; Jungclaus, A.*; Pain, S. D.*; Bildstein, V.*; Chapman, R.*; De Angelis, G.*; Johansen, J. G.*; Van Duppen, P.*; et al.
Physics Letters B, 740, p.298 - 302, 2015/01
Times Cited Count:22 Percentile:82.56(Astronomy & Astrophysics)Simpson, G. S.*; Gey, G.*; Jungclaus, A.*; Taprogge, J.*; Nishimura, Shunji*; Sieja, K.*; Doornenbal, P.*; Lorusso, G.*; Sderstr
m, P.-A.*; Sumikama, Toshiyuki*; et al.
Physical Review Letters, 113(13), p.132502_1 - 132502_6, 2014/09
Times Cited Count:64 Percentile:92.13(Physics, Multidisciplinary)Diriken, J.*; Patronis, N.*; Andreyev, A. N.*; Antalic, S.*; Bildstein, V.*; Blazhev, A.*; Darby, I. G.*; De Witte, H.*; Eberth, J.*; Elseviers, J.*; et al.
Physics Letters B, 736, p.533 - 538, 2014/09
Times Cited Count:17 Percentile:74.47(Astronomy & Astrophysics)Orlandi, R.; Mcher, D.*; Raabe, R.*; Jungclaus, A.*; Pain, S. D.*; Bildstein, V.*; Chapman, R.*; De Angelis, G.*; Johansen, J. G.*; Van Duppen, P.*; et al.
no journal, ,