Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Luce, T. C.*; Challis, C. D.*; Ide, Shunsuke; Joffrin, E.*; Kamada, Yutaka; Politzer, P. A.*; Schweinzer, J.*; Sips, A. C. C.*; Stober, J.*; Giruzzi, G.*; et al.
Nuclear Fusion, 54(1), p.013015_1 - 013015_15, 2013/12
Times Cited Count:29 Percentile:81.28(Physics, Fluids & Plasmas)Imbeaux, F.*; Citrin, J.*; Hobirk, J.*; Hogeweij, G. M. D.*; Kchl, F.*; Leonov, V. M.*; Miyamoto, Seiji; Nakamura, Yukiharu*; Parail, V.*; Pereverzev, G. V.*; et al.
Nuclear Fusion, 51(8), p.083026_1 - 083026_11, 2011/08
Times Cited Count:35 Percentile:81.02(Physics, Fluids & Plasmas)Murakami, Masanori*; Park, J. M.*; Giruzzi, G.*; Garcia, J.*; Bonoli, P.*; Budny, R. V.*; Doyle, E. J.*; Fukuyama, Atsushi*; Hayashi, Nobuhiko; Honda, Mitsuru; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03
Imbeaux, F.*; Basiuk, V.*; Budny, R.*; Casper, T.*; Citrin, J.*; Fereira, J.*; Fukuyama, Atsushi*; Garcia, J.*; Gribov, Y. V.*; Hayashi, Nobuhiko; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03
Stober, J.*; Jackson, G. L.*; Ascasibar, E.*; Bae, Y.-S.*; Bucalossi, J.*; Cappa, A.*; Casper, T.*; Cho, M. H.*; Gribov, Y.*; Granucci, G.*; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10
Imbeaux, F.*; Basiuk, V.*; Budny, R.*; Casper, T.*; Citrin, J.*; Fereira, J.*; Fukuyama, Atsushi*; Garcia, J.*; Gribov, Y. V.*; Hayashi, Nobuhiko; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10
In order to prepare adequate current ramp-up and ramp-down scenarios for ITER, present experiments from several tokamaks have been analyzed by means of integrated modeling in view of determining relevant heat transport models for these operation phases. The results of these studies are presented and projections to ITER current ramp-up and ramp-down scenarios are done, focusing on the baseline inductive scenario (main heating plateau current of 15 MA). Various transport models have been tested by means of integrated modeling against experimental data from ASDEX Upgrade, C-Mod, DIII-D, JET and Tore Supra, including both Ohmic plasmas and discharges with additional heating/current drive. With using the most successful models, projections to the ITER current ramp-up and ramp-down phases are carried out. Though significant differences between models appear on the electron temperature prediction, the final q-profiles reached in the simulation are rather close.
Sips, A. C. C.*; Casper, T.*; Doyle, E. J.*; Giruzzi, G.*; Gribov, Y.*; Hobirk, J.*; Hogeweij, G. M. D.*; Horton, L. D.*; Hubbard, A. E.*; Hutchinson, I.*; et al.
Nuclear Fusion, 49(8), p.085015_1 - 085015_11, 2009/08
Times Cited Count:52 Percentile:87.3(Physics, Fluids & Plasmas)Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for
0.23-0.33 V m
is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps
(3)
0.85 during the ramp up to
= 3. A rise phase with an H-mode transition is capable of achieving
(3)
0.7 at the start of the FT. Operation of the H-mode reference scenario at
3 and the hybrid scenario at
= 4-4.5 during the FT phase is documented, providing data for the
(3) evolution after the H-mode transition and the
(3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept
1.2 during the first half of the current decay, using a slow
ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating.
Doyle, E. J.*; Houlberg, W. A.*; Kamada, Yutaka; Mukhovatov, V.*; Osborne, T. H.*; Polevoi, A.*; Bateman, G.*; Connor, J. W.*; Cordey, J. G.*; Fujita, Takaaki; et al.
Nuclear Fusion, 47(6), p.S18 - S127, 2007/06
no abstracts in English
Bonoli, P. T.*; Harvey, R. W.*; Kessel, C. E.*; Imbeaux, F.*; Oikawa, Toshihiro; Schneider, M.*; Barbato, E.*; Decker, J.*; Giruzzi, G.*; Forest, C. B.*; et al.
Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03
no abstracts in English
Kessel, C. E.*; Giruzzi, G.*; Sips, A. C. C.*; Budny, R. V.*; Artaud, J. F.*; Basiuk, V.*; Imbeaux, F.*; Joffrin, E.*; Schneider, M.*; Luce, T.*; et al.
Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03
no abstracts in English
Stober, J.*; Lomas, P. J.*; Saibene, G.*; Andrew, Y.*; Belo, P.*; Conway, G. D.*; Herrmann, A.*; Horton, L. D.*; Kempenaars, M.*; Koslowski, H.-R.*; et al.
Nuclear Fusion, 45(11), p.1213 - 1223, 2005/11
Times Cited Count:39 Percentile:76.06(Physics, Fluids & Plasmas)no abstracts in English
Joffrin, E.*; Sips, A. C. C.*; Artaud, J. F.*; Becoulet, A.*; Bertalot, L.*; Budny, R.*; Buratti, P.*; Belo, P.*; Challis, C. D.*; Crisanti, F.*; et al.
Nuclear Fusion, 45(7), p.626 - 634, 2005/07
Times Cited Count:92 Percentile:92.98(Physics, Fluids & Plasmas)no abstracts in English
Joffrin, E.*; Sips, A. C. C.*; Artaud, J. F.*; Becoulet, A.*; Budny, R.*; Buratti, P.*; Belo, P.*; Challis, C. D.*; Crisanti, F.*; de Baar, M.*; et al.
Proceedings of 20th IAEA Fusion Energy Conference (FEC 2004) (CD-ROM), 8 Pages, 2004/11
no abstracts in English
Belo, P.*; Buratti, P.*; Buttery, R. J.*; Hender, T. C.*; Howell, D. F.*; Isayama, Akihiko; Joffrin, E.*; Nave, M. F. F.*; Sips, G.*
Proceedings of 31st European Physical Society Conference on Plasma Physics, Vol.28B, p.1 - 170, 2004/00
no abstracts in English
Bcoulet, M.*; Huysmans, G.*; Sarazin, Y.*; Garbet, X.*; Ghendrih, P.*; Rimini, F.*; Joffrin, E.*; Litaudon, X.*; Monier-Garbet, P.*; An
, J.-M.*; et al.
Plasma Physics and Controlled Fusion, 45(12A), p.A93 - A113, 2003/12
Times Cited Count:84 Percentile:91.4(Physics, Fluids & Plasmas)no abstracts in English
Hobirk, J.*; Oikawa, Toshihiro; Fujita, Takaaki; Fukuda, Takeshi; Gnter, S.*; Gruber, O.*; Isayama, Akihiko; Kamada, Yutaka; Kikuchi, Mitsuru; Maraschek, M.*; et al.
Europhysics Conference Abstracts (CD-ROM), 27A, 4 Pages, 2003/00
no abstracts in English
Oikawa, Toshihiro; Park, J. M.*; Polevoi, A. R.*; Schneider, M.*; Giruzzi, G.*; Murakami, M.*; Tani, Keiji*; Sips, A. C. C.*
no journal, ,
The author has been leading a neutral beam current drive code benchmark in the ITPA IOS topical group frame. Presently, the orbit following Monte-Carlo codes OFMC, NUBEAM and SPOT and the Fokker-Planck codes ACCOME and ASTRA have been compared. The NB fast ion source profile agrees well among the codes that employ different beam models and beam stopping models. The heating profile generally agrees, but there is visible discrepancy. This is considerted to result from finite orbit width effects. Large differenence is observed in the NBCD profile. OFMC and ACCOME calculates the initial pitch angle of a fast ion against the toroidal magnetic field, which should correctly be against the equilibrium field. By correcting this the difference is expected to be resolved to some degree. ASTRA's deviation from other codes results from its too simplified NBI geometry and a Fokker-Planck equation derived for a cylinder plasma being used, which does not accordingly include toroidal effects.