Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Additive-free hydrothermal leaching method with low environmental burden for screening of strontium in soil

Kato, Takuma*; Nagaoka, Mika; Guo, H.*; Fujita, Hiroki; Aida, Taku*; Smith, R. L. Jr.*

Environmental Science and Pollution Research, 28(39), p.55725 - 55735, 2021/10

 Times Cited Count:0 Percentile:0(Environmental Sciences)

In this work, hydrothermal leaching was applied to simulated soils (clay minerals vermiculite, montmorillonite, kaolinite) and actual soils (Terunuma, Japan) to generate organic acids with the objective to develop an additive-free screening method for determination of Sr in soil. Stable strontium (SrCl$$_{2}$$) was adsorbed onto soils for study and ten organic acids were evaluated for leaching Sr from simulated soils under hydrothermal conditions (120 to 200$$^{circ}$$C) at concentrations up to 0.3 M. For strontium-adsorbed vermiculite (Sr-V), 0.1 M citric acid was found to be effective for leaching Sr at 150$$^{circ}$$C and 1 h treatment time. Based on these results, the formation of organic acids from organic matter in Terunuma soil was studied. Hydrothermal treatment of Terunuma soil produced a maximum amount of organic acids at 200$$^{circ}$$C and 0.5 h reaction time. To confirm the possibility for leaching of Sr from Terunuma soil, strontium-adsorbed Terunuma soil (Sr-S) was studied. For Sr-S, hydrothermal treatment at 200$$^{circ}$$C for 0.5 h reaction time allowed 40% of the Sr to be leached at room temperature, thus demonstrating an additive-free method for screening of Sr in soil. The additive-free hydrothermal leaching method avoids calcination of solids in the first step of chemical analysis and has application to both routine monitoring of metals in soils and to emergency situations.

Journal Articles

Supercritical water pretreatment method for analysis of strontium and uranium in soil (Andosols)

Nagaoka, Mika; Fujita, Hiroki; Aida, Taku*; Guo, H.*; Smith, R. L. Jr.*

Applied Radiation and Isotopes, 168, p.109465_1 - 109465_6, 2021/02

 Times Cited Count:0 Percentile:0.01(Chemistry, Inorganic & Nuclear)

The radioactivities in the environmental samples are analyzed to monitor the nuclear power facilities. The pretreatment of radioactive nuclides of alpha and beta emitters in the environmental samples is performed with acid to decompose organic matter and extract object nuclide such as $$^{90}$$Sr, U and Pu. However, the pretreatment methods are time-consuming and used many concentrated acid solutions that are unsafe and hazardous. Therefore, we develop to the new pretreatment method using supercritical water instead of acid. Hydrothermal pretreatment of soils (Andosols) from Ibaraki prefecture (Japan) was used to improve methods for monitoring radioactive Sr and U. Calcined samples were pretreated with subcritical or supercritical water (SCW) followed by extraction with 0.5 M HNO$$_{3}$$ solutions. With SCW pretreatment, recoveries of Sr and U were 70% and 40%, respectively. Experimental recoveries obtained can be described by a linear relationship in water density. The proposed method is robust and can lower environmental burden of routine analytical protocols.

2 (Records 1-2 displayed on this page)
  • 1