Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Domal, S. J.*; Correa-Alfonso, C. M.*; Paulbeck, C. J.*; Griffin, K. T.*; Sato, Tatsuhiko; Funamoto, Sachiyo*; Cullings, H. M.*; Egbert, S. D.*; Endo, Akira; Hertel, N. E.*; et al.
Health Physics, 125(4), p.245 - 259, 2023/10
Times Cited Count:0 Percentile:0.00(Environmental Sciences)The RERF Working Group on Organ Dose (WGOD) has established the J45 (Japan 1945) series of high-resolution voxel phantoms, which were derived from the UF/NCI series of hybrid phantoms and scaled to match mid-1940s Japanese body morphometries. In this present study, we present the J45 pregnant female phantoms in both a kneeling and lying posture, and assess the dosimetric impact of these more anatomically realistic survivor models in comparisons to current organ doses given by the DS02 system. For the kneeling phantoms facing the bomb hypocenter, organ doses from bomb source photon spectra were shown to be overestimated by the DS02 system by up to a factor of 1.45 for certain fetal organs and up to a factor of 1.17 for maternal organs. For lying phantoms with their feet in the direction of the hypocenter, fetal organ doses from bomb source photon spectra were underestimated by the DS02 system by factors as low as 0.77 while maternal organ doses were overestimated by up to a factor of 1.38. Results from this study highlight the degree to which the existing DS02 system can differ from organ dosimetry based upon 3D radiation transport simulations using more anatomically realistic models of those survivors exposed during pregnancy while in a kneeling or lying position.
Pacio, J.*; Van Tichelen, K.*; Eckert, S.*; Wondrak, T.*; Di Piazza, I.*; Lorusso, P.*; Tarantino, M.*; Daubner, M.*; Litfin, K.*; Ariyoshi, Gen; et al.
Nuclear Engineering and Design, 399, p.112010_1 - 112010_15, 2022/12
Times Cited Count:11 Percentile:87.32(Nuclear Science & Technology)Heavy-liquid metals (HLMs), such as lead and lead-bismuth eutectic (LBE), are proposed as primary coolants in accelerator driven systems and next-generation fast reactors. In Europe, the reference systems using HLMs are MYRRHA (LBE) and ALFRED (lead). This article presents an overview of recent experiences and ongoing activities on pool-type and loop-type HLM experiments. Pool tests include the measurement of forced- and natural-circulation flow patterns in several scenarios representative of nominal and decay heat removal conditions. Loop tests are focused on the evaluation of specific components, like mockups of the fuel assembly, control rod and heat exchangers. They involve the measurement of global variables, such as flow rate and pressure difference, and local quantities like temperature, velocity and vibrations. Advanced instrumentation, capable of sustaining high temperatures and corrosion, is necessary for accurate measurements, often in compact geometries. In addition to traditional techniques, other instrumentation based on optical fibers, ultrasonic and electromagnetic methods are discussed.
Lessux, G. G.*; Sakai, Hironori; Hattori, Taisuke*; Tokunaga, Yo; Kambe, Shinsaku; Kuhns, P. L.*; Reyes, A. P.*; Thompson, J. D.*; Pagliuso, P. G.*; Urbano, R. R.*
Physical Review B, 101(16), p.165111_1 - 165111_6, 2020/04
Times Cited Count:9 Percentile:39.29(Materials Science, Multidisciplinary)CeRhIn is a Kondo-lattice prototype in which a magnetic field
31T induces an abrupt Fermi-surface (FS) reconstruction and pronounced in-plane electrical transport anisotropy all within its antiferromagnetic state. Here we report low-temperature nuclear magnetic resonance (NMR) measurements revealing a pronounced decrease in the
In formal Knight shift, without changes in crystal or magnetic structures, of CeRhIn
at fields (
) spanning
. We discuss the emergent state above
in terms of a change in Ce's 4
orbitals that arises from field-induced evolution of crystal-electric field (CEF) energy levels. This change in orbital character enhances hybridization between the 4
and the conduction electrons that leads ultimately to an itinerant quantum-critical point at
50T.
Gomez-Perez, J. M.*; Oyanagi, Koichi*; Yahiro, Reimei*; Ramos, R.*; Hueso, L. E.*; Saito, Eiji; Casanova, F.*
Applied Physics Letters, 116(3), p.032401_1 - 032401_5, 2020/01
Times Cited Count:10 Percentile:47.20(Physics, Applied)Brissonneau, L.*; Ikeuchi, Hirotomo; Piluso, P.*; Gousseau, J.*; David, C.*; Testud, V.*; Roger, J.*; Bouyer, V.*; Kitagaki, Toru; Nakayoshi, Akira; et al.
Journal of Nuclear Materials, 528, p.151860_1 - 151860_18, 2020/01
Times Cited Count:18 Percentile:86.70(Materials Science, Multidisciplinary)Bouyer, V.*; Journeau, C.*; Haquet, J. F.*; Piluso, P.*; Nakayoshi, Akira; Ikeuchi, Hirotomo; Washiya, Tadahiro; Kitagaki, Toru
Proceedings of 9th Conference on Severe Accident Research (ERMSAR 2019) (Internet), 13 Pages, 2019/03
Maurer, C.*; Bar, J.*; Kusmierczyk-Michulec, J.*; Crawford, A.*; Eslinger, P. W.*; Seibert, P.*; Orr, B.*; Philipp, A.*; Ross, O.*; Generoso, S.*; et al.
Journal of Environmental Radioactivity, 192, p.667 - 686, 2018/12
Times Cited Count:28 Percentile:64.69(Environmental Sciences)It is very important to understand the impact for CTBT stations caused by radioxenon emitted from medical isotope production facilities for detection of underground nuclear tests. Predictions of the impact on six CTBT radionuclide stations in the Southern Hemisphere of radioxenon emitted from the medical isotope production facility in Australia were carried out by participants from ten nations using ATM (Atmospheric Transport Modeling) based on the emission data of radioxenon from this facility, as part of study on impact of radioxenon emitted from medical isotope production facilities on CTBT radionuclide stations.
Kitagaki, Toru; Ikeuchi, Hirotomo; Yano, Kimihiko; Ogino, Hideki; Haquet, J.-F.*; Brissonneau, L.*; Tormos, B.*; Piluso, P.*; Washiya, Tadahiro
Progress in Nuclear Science and Technology (Internet), 5, p.217 - 220, 2018/11
Jentschel, M.*; Blanc, A.*; de France, G.*; Kster, U.*; Leoni, S.*; Mutti, P.*; Simpson, G.*; Soldner, T.*; Ur, C.*; Urban, W.*; et al.
Journal of Instrumentation (Internet), 12(11), p.P11003_1 - P11003_33, 2017/11
Times Cited Count:43 Percentile:85.20(Instruments & Instrumentation)Hou, D.*; Qiu, Z.*; Barker, J.*; Sato, Koji*; Yamamoto, Kei; Vlez, S.*; Gomez-Perez, J. M.*; Hueso, L. E.*; Casanova, F.*; Saito, Eiji
Physical Review Letters, 118(14), p.147202_1 - 147202_6, 2017/04
Times Cited Count:120 Percentile:96.86(Physics, Multidisciplinary)Eslinger, P. W.*; Bowyer, T. W.*; Achim, P.*; Chai, T.*; Deconninck, B*; Freeman, K.*; Generoso, S.*; Hayes, P.*; Heidmann, V.*; Hoffman, I.*; et al.
Journal of Environmental Radioactivity, 157, p.41 - 51, 2016/06
Times Cited Count:37 Percentile:71.75(Environmental Sciences)It is very important to understand the impact for CTBT stations caused by radioxenon emitted from nuclear facilities and medical isotope production facilities for detection of underground nuclear tests. Predictions of the impact on the CTBT radionuclide station in Germany of radioxenon emitted from the medical isotope production facility in Belgium were carried out by participants from seven nations using ATM (Atmospheric Transport Modeling) based on the emission data of radioxenon from this facility, as part of study on impact of radioxenon emitted from medical isotope production facilities on CTBT radionuclide stations.
Zhang, H. J.; Yamamoto, Shunya; Gu, B.; Li, H.; Maekawa, Masaki; Fukaya, Yuki; Kawasuso, Atsuo
Physical Review Letters, 114(16), p.166602_1 - 166602_5, 2015/04
Times Cited Count:57 Percentile:89.73(Physics, Multidisciplinary)Charge-to-spin conversion induced by the Rashba-Edelstein effect was directly observed for the first time in samples with no magnetic layer. A spin-polarized positron beam was used to probe the spin polarization of the outermost surface electrons of Bi/Ag/AlO
and Ag/Bi/Al
O
when charge currents were only associated with the Ag layers. An opposite surface spin polarization was found between Bi/Ag/Al
O
and Ag/Bi/Al
O
samples with the application of a charge current in the same direction. The surface spin polarizations of both systems decreased exponentially with the outermost layer thickness, suggesting the occurrence of spin diffusion from the Bi/Ag interface to the outermost surfaces. This work provides a new technique to measure spin diffusion length.
Nagatani, Taketeru; Nakajima, Shinji; Kawakubo, Yoko; Shiromo, Hideo; Asano, Takashi; Marlow, J.*; Swinhoe, M. T.*; Menlove, H.*; Rael, C.*; Kawasue, Akane*; et al.
Book of Abstracts, Presentations and Papers of Symposium on International Safeguards; Linking Strategy, Implementation and People (Internet), 8 Pages, 2015/03
Sahin, E.*; Doncel, M.*; Sieja, K.*; De Angelis, G.*; Gadea, A.*; Quintana, B.*; Grgen, A.*; Modamio, V.*; Mengoni, D.*; Valiente-Dob
n, J. J.*; et al.
Physical Review C, 91(3), p.034302_1 - 034302_9, 2015/03
Times Cited Count:27 Percentile:82.31(Physics, Nuclear)Mirabueno, M. H. T.*; Torii, Masayuki*; Laguerta, E. P.*; Delos Reyes, P. J.*; Fujiki, Toshiyuki*; Bariso, E. B.*; Okuno, Mitsuru*; Nakamura, Toshio*; Danhara, Toru*; Kokubu, Yoko; et al.
Chigaku Zasshi, 123(5), p.751 - 760, 2014/10
Core drilling at site IRBH-2 within Irosin caldera, southern Luzon, reached 50 m. Systematic logging and documentation were done to describe the sediments. AMS C dates were obtained for plant fragments from the peaty layers. Lahars and fluvial deposits were the predominant deposits in the core sequence. The upper 12 m was comprised mostly by andesitic fluvial and minor lahars. Eight fallouts were intercalated with reworked sediments from depth interval of 20 to 50 m. The refractive index measurement of analyzed samples indicated that post-caldera eruptions generated andesite, dacite and minor rhyolite. The similarity in petrographic characteristics between the rhyolite fallout and the Irosin ignimbrite indicates that small-scale eruptions involving magma from the caldera event occurred during post-caldera stage.Young radiocarbon dates obtained from the peaty layers shows that volcaniclastic deposits in the upper levels were likely derived from the eruptions of Bulusan volcano.
Nakajima, Shinji; Nagatani, Taketeru; Shiromo, Hideo; Asano, Takashi; Marlow, J. B.*; Swinhoe, M. T.*; Menlove, H. O.*; Rael, C. D.*; Kawasue, Akane*; Iso, Shoko*; et al.
Proceedings of INMM 55th Annual Meeting (Internet), 10 Pages, 2014/07
The Advanced Fuel Assembly Assay System (AFAS) is an unattended non-destructive assay (NDA) system by neutron measurement to verify the plutonium amount in an LWR plutonium and uranium mixed oxide (MOX) fuel assembly. The assembly will be fabricated in the MOX fuel fabrication plant under construction by the Japan Nuclear Fuel Limited. The AFAS has been developed by Los Alamos National Laboratory under the auspices of the Secretariat of Nuclear Regulation Authority in Japan. The AFAS is the first NDA system which will verify the active length of the assembly without inspector attendance. Japan Atomic Energy Agency (JAEA) has conducted the performance test for the AFAS under the contract with Nuclear Material Control Center to demonstrate this active length verification technology by using MOX fuel assemblies owned by JAEA. As the results, it was confirmed that measurement error of the active length for the MOX fuel assembly was less than 0.1% and it was satisfied with requirement by IAEA. This paper provides the performance test results for the active length verification of the AFAS.
Nakajima, Shinji; Nagatani, Taketeru; Asano, Takashi; Kawasue, Akane*; Iso, Shoko*; Kumakura, Shinichi*; Watanabe, Takehito*; Marlow, J. B.*; Swinhoe, M. T.*; Menlove, H. O.*; et al.
Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-34-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2013/10
The Advanced Verification for Inventory Sample System (AVIS) is a nondestructive assay (NDA) system in order to verify the plutonium mass in the small MOX samples at Japan Nuclear Fuel Limited (JNFL) MOX fuel fabrication plant (J-MOX) under construction. The AVIS is required the high measurement performance because the AVIS will be used as a verification tool to substitute destructive analysis for a part of the samples which needs the bias defect verification. Therefore, the AVIS will fulfill an important role in the safeguards approach for J-MOX. Japan Atomic Energy Agency (JAEA) conducted the performance test of the AVIS under the contract with NMCC. As the results of these tests, we confirmed that the AVIS could almost satisfy the required performance by IAEA.
Nakajima, Shinji; Nagatani, Taketeru; Asano, Takashi; Marlow, J. B.*; Swinhoe, M. T.*; Menlove, H. O.*; Rael, C. D.*; Kawasue, Akane*; Iso, Shoko*; Kumakura, Shinichi*; et al.
Proceedings of INMM 54th Annual Meeting (CD-ROM), 10 Pages, 2013/07
The advanced verification inventory system (AVIS) is a nondestructive assay (NDA) system developed by Los Alamos National Laboratory (LANL) to measure small samples of bulk plutonium and uranium mixed oxide (MOX) powder and pellets at the Japan Nuclear Fuel Limited (JNFL) mixed oxide fuel fabrication plant (J-MOX). In order to mitigate the workload on the Rokkasho On-Site Laboratory (OSL), it is intended that the AVIS measurement will be substituted for a part of the Destructive Assay (DA) for J-MOX. Based on the commission from Office for Nuclear Non-Proliferation and Safeguards (JSGO) of Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Nuclear Material Control Center (NMCC), Japan Atomic Energy Agency (JAEA) has conducted the performance test of the AVIS in order to confirm the system performance before installation at the J-MOX site. The performance test consists of two phases. In the phase 1 test, detector parameters such as detector efficiency and die-away time were evaluated by using a californium-252 neutron source. These results agreed well with design value and were reported at the 53rd INMM annual meeting. JAEA conducted the phase 2 test by using MOX materials in order to evaluate the total measurement uncertainty (TMU). In the test, influence of sample density, plutonium concentration and organic additives in samples were also evaluated. Consequently, it is expected that AVIS can achieve the target TMU of 0.5% required in user requirement of IAEA by optimizing measurement condition and by using well-characterized standards. This paper provides a summary of the results of comprehensive performance test of AVIS.
Kaufmann, S.*; Simpson, D. A.*; Hall, L. T.*; Perunicic, V.*; Senn, P.*; Steinert, S.*; McGuinness, L. P.*; Johnson, B. C.*; Oshima, Takeshi; Caruso, F.*; et al.
Proceedings of the National Academy of Sciences of the United States of America, 110(27), p.10894 - 10898, 2013/07
Times Cited Count:111 Percentile:92.90(Multidisciplinary Sciences)Nagatani, Taketeru; Nakajima, Shinji; Asano, Takashi; Marlow, J. B.*; Swinhoe, M. T.*; Menlove, H. O.*; Rael, C. D.*; Kawasue, Akane*; Iso, Shoko*; Kumakura, Shinichi*; et al.
Proceedings of INMM 53rd Annual Meeting (CD-ROM), 9 Pages, 2012/07
The advanced verification for inventory sample system (AVIS) is a nondestructive assay (NDA) system designed to measure small samples of bulk plutonium uranium mixed oxide (MOX) powder and pellets at the proposed Japan Nuclear Fuel Limited (JNFL) mixed oxide fuel fabrication plant (J-MOX). The system consists of a He-based passive neutron well counter with an integrated high-purity germanium
system. The AVIS is intended to meet a performance specification of a total measurement uncertainty of less than 0.5% in the neutron (
Pu effective) measurement. It is intended that the AVIS measurement will be substituted for a fraction of the DA samples from J-MOX. JAEA has conducted performance testing on the AVIS in order to confirm the system performance before installation and to minimize the period of calibration at J-MOX site. In this paper, we provide a summary of the result of performance test phase 1 and the test plan of performance test phase 2 of the AVIS.