Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Miyabe, Masabumi; Satou, Yukihiko; Wakaida, Ikuo; Terabayashi, Ryohei*; Sonnenschein, V.*; Tomita, Hideki*; Zhao, Y.*; Sakamoto, Tetsuo*
Journal of Physics B; Atomic, Molecular and Optical Physics, 54(14), p.145003_1 - 145003_8, 2021/07
Times Cited Count:1 Percentile:0.00(Optics)Two-color two-step photoionization optogalvanic spectroscopy was performed using high-repetition-rate titanium sapphire lasers and a uranium hollow cathode lamp to find the two-step resonance ionization schemes of uranium. Many ionization transitions were observed by exciting uranium atoms in a ground state into five, even parity, excited levels with the first-step laser and by scanning the second-step laser wavelengths. By blocking the first-step laser, single-color, two-photon ionization transitions were also identified. From these results, we have found more than 50 odd-parity autoionizing levels of uranium in the energy, ranging from the ionization potential (49958.4 cm) to 51150 cm. The determined energy levels are within 1 cm of previously reported values.
Sonnenschein, V.*; Tsuji, Yoshiyuki*; Kokuryu, Shoma*; Kubo, Wataru*; Suzuki, So*; Tomita, Hideki*; Kiyanagi, Yoshiaki*; Iguchi, Tetsuo*; Matsushita, Taku*; Wada, Nobuo*; et al.
Review of Scientific Instruments, 91(3), p.033318_1 - 033318_12, 2020/03
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Sonoda, Tetsu*; Katayama, Ichiro*; Wada, Michiharu*; Iimura, Hideki; Sonnenschein, V.*; Iimura, Shun*; Takamine, Aiko*; Rosenbusch, M.*; Kojima, Takao*; Ahn, D. S.*; et al.
Progress of Theoretical and Experimental Physics (Internet), 2019(11), p.113D02_1 - 113D02_12, 2019/11
Times Cited Count:1 Percentile:10.61(Physics, Multidisciplinary)An in-flight separator, BigRIPS, at RIBF in RIKEN provides each experiment with specific nuclides separated from many nuclides produced by projectile fragmentation or in-flight fission. In this process, nuclides other than separated ones are discarded on the slits in BigRIPS, although they include many nuclides interested from the view point of nuclear structure. In order to extract these nuclides for parasitic experiments, we are developing a method using laser ion-source (PALIS). A test experiment with Se beam from RIBF has been performed by using a gas cell set in BigRIPS. Unstable nuclides around Se were stopped in the gas cell in accordance with a calculation using LISE code. The stopping efficiency has been estimated to be about 30%. As a next step, we will establish the technique for extracting reaction products from the gas cell.
Matsushita, Taku*; Sonnenschein, V.*; Guo, W.*; Hayashida, Hirotoshi*; Hiroi, Kosuke; Hirota, Katsuya*; Iguchi, Tetsuo*; Ito, Daisuke*; Kitaguchi, Masaaki*; Kiyanagi, Yoshiaki*; et al.
Journal of Low Temperature Physics, 196(1-2), p.275 - 282, 2019/07
Times Cited Count:1 Percentile:4.22(Physics, Applied)Sakamoto, Tetsuo*; Morita, Masato*; Kanenari, Keita*; Tomita, Hideki*; Sonnenschein, V.*; Saito, Kosuke*; Ohashi, Masaya*; Kato, Kotaro*; Iguchi, Tetsuo*; Kawai, Toshihide*; et al.
Analytical Sciences, 34(11), p.1265 - 1270, 2018/11
Times Cited Count:9 Percentile:33.07(Chemistry, Analytical)Sonoda, Tetsu*; Iimura, Hideki; Reponen, M.*; Wada, Michiharu*; Katayama, Ichiro*; Sonnenschein, V.*; Takamatsu, Takahide*; Tomita, Hideki*; Kojima, Takao*
Nuclear Instruments and Methods in Physics Research A, 877, p.118 - 123, 2018/01
Times Cited Count:4 Percentile:35.54(Instruments & Instrumentation)In order to produce low-energy RI beams at RIKEN RIBF, a laser ion source, PALIS, is under construction. This ion source is based on resonance ionization of RI atoms captured in Ar gas. Because the ion source is located 70m away from lasers, we have developed an optical system for laser beam transport. This system can be controlled remotely when the ion source is not accessible because of high radiation level. The position of laser beam after transport is reasonably stable, and the transport efficiency is about 50%.
Tomita, Hideki*; Saito, Kosuke*; Ohashi, Masaya*; Sonnenschein, V.*; Kato, Kotaro*; Suzuki, So*; Iguchi, Tetsuo*; Morita, Masato*; Sakamoto, Tetsuo*; Kanenari, Keita*; et al.
no journal, ,
no abstracts in English