Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.
IEEJ Transactions on Electrical and Electronic Engineering, 19(11), p.1888 - 1894, 2024/11
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)Soyama, Kazuhiko; Hayashida, Hirotoshi*; Maruyama, Ryuji; Yamazaki, Dai; Goto, Yuiki*; Kobayashi, Yuki*; Arakawa, Shohei*; Yamamoto, Yugo*; Suba, Kenta*; Yamamura, Kazuya*
JAEA-Research 2024-006, 15 Pages, 2024/10
A neutron optics design has been conducted for a neutron magnetic microscope that utilize a Wolter type I multilayer supermirror for the purpose of magnetic fields imaging in magnetic materials. Ray trace simulation was performed for a magnifying imaging optical system with a magnification rate of 12.5 times. Based on classical model of Lamor precession, depolarization due to magnetic domains was simulated, and the effect of slope errors on the Wolter mirror created by the replica method on the spatial resolution of the microscope was investigated. As a result, reference data about the shape error required to obtain spatial resolution on the order of micrometers was obtained.
Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.
Journal of Physics; Conference Series, 2776, p.012009_1 - 012009_9, 2024/06
Ishida, Takekazu*; Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Koyama, Tomio*; et al.
Journal of Low Temperature Physics, 214(3-4), p.152 - 157, 2024/02
Times Cited Count:0 Percentile:0.00(Physics, Applied)Shishido, Hiroaki*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.
Journal of Applied Crystallography, 56(4), p.1108 - 1113, 2023/08
Times Cited Count:2 Percentile:32.63(Chemistry, Multidisciplinary)Teshigawara, Makoto; Nakamura, Mitsutaka; Kinsho, Michikazu; Soyama, Kazuhiko
JAEA-Technology 2021-022, 208 Pages, 2022/02
The Materials and Life science experimental Facility (MLF) is an accelerator driven pulsed spallation neutron and muon source with a 1 MW proton beam. The construction began in 2004, and we started beam operation in 2008. Although problems such as exudation of cooling water from the target container have occurred, as of April 2021, the proton beam power has reached up to 700 kW gradually, and stable operation is being performed. In recent years, the operation experience of the rated 1 MW has been steadily accumulated. Several issues such as the durability of the target container have been revealed according to the increase in the operation time. Aiming at making a further improvement of MLF, we summarized the current status of achievements for the design values, such as accelerator technology (LINAC and RCS), neutron and muon source technology, beam transportation of these particles, detection technology, and neutron and muon instruments. Based on the analysis of the current status, we tried to extract improvement points for upgrade of MLF. Through these works, we will raise new proposals that promote the upgrade of MLF, attracting young people. We would like to lead to the further success of researchers and engineers who will lead the next generation.
Shishido, Hiroaki*; Nishimura, Kazuma*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; et al.
IEEE Transactions on Applied Superconductivity, 31(9), p.2400505_1 - 2400505_5, 2021/12
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)In this study, we employed a superconducting detector, current-biased kinetic-inductance detector (CB-KID) for neutron imaging using a pulsed neutron source. We employed the delay-line method, and high spatial resolution imaging with only four reading channels was achieved. We also performed wavelength-resolved neutron imaging by the time-of-flight method. We obtained the neutron transmission images of a Gd-Al alloy sample, inside which single crystals of GdAl were grown, using the delay-line CB-KID. Single crystals were well imaged, in both shapes and distributions, throughout the Al-Gd alloy. We identified Gd nuclei via neutron transmissions that exhibited characteristic suppression above the neutron wavelength of 0.03 nm. In addition, the Gd resonance dip, a dip structure of the transmission caused by the nuclear reaction between an isotope and neutrons, was observed even when the number of events was summed over a limited area of 15 m 12 m. Gd selective imaging was performed using the resonance dip of Gd, and it showed clear Gd distribution even with a limited neutron wavelength range of 1 pm.
Maruyama, Ryuji; Yamazaki, Dai; Aoki, Hiroyuki; Akutsu, Kazuhiro*; Hanashima, Takayasu*; Miyata, Noboru*; Soyama, Kazuhiko; Bigault, T.*; Saerbeck, T.*; Courtois, P.*
Journal of Applied Physics, 130(8), p.083904_1 - 083904_10, 2021/08
Times Cited Count:3 Percentile:20.23(Physics, Applied)Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.
Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08
Times Cited Count:1 Percentile:15.03(Instruments & Instrumentation)Maruyama, Ryuji; Yamazaki, Dai; Akutsu, Kazuhiro*; Hanashima, Takayasu*; Miyata, Noboru*; Aoki, Hiroyuki; Soyama, Kazuhiko
JPS Conference Proceedings (Internet), 33, p.011092_1 - 011092_6, 2021/03
no abstracts in English
Vu, TheDang; Shishido, Hiroaki*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.
Superconductor Science and Technology, 34(1), p.015010_1 - 015010_10, 2021/01
Times Cited Count:4 Percentile:27.66(Physics, Applied)Shishido, Hiroaki*; Nishimura, Kazuma*; Vu, TheDang*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; Oku, Takayuki; et al.
Journal of Physics; Conference Series, 1590, p.012033_1 - 012033_8, 2020/10
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)Akutsu, Kazuhiro*; Kira, Hiroshi*; Miyata, Noboru*; Hanashima, Takayasu*; Miyazaki, Tsukasa*; Kasai, Satoshi*; Yamazaki, Dai; Soyama, Kazuhiko; Aoki, Hiroyuki
Polymers (Internet), 12(10), p.2180_1 - 2180_10, 2020/10
Times Cited Count:4 Percentile:12.86(Polymer Science)Vu, TheDang; Nishimura, Kazuma*; Shishido, Hiroaki*; Harada, Masahide; Oikawa, Kenichi; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.
Journal of Physics; Conference Series, 1590, p.012036_1 - 012036_9, 2020/07
Times Cited Count:1 Percentile:63.92(Engineering, Electrical & Electronic)Iizawa, Yuki*; Shishido, Hiroaki*; Nishimura, Kazuma*; Vu, TheDang*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; et al.
Superconductor Science and Technology, 32(12), p.125009_1 - 125009_8, 2019/12
Times Cited Count:14 Percentile:56.70(Physics, Applied)Vu, TheDang; Iizawa, Yuki*; Nishimura, Kazuma*; Shishido, Hiroaki*; Kojima, Kenji*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; Oku, Takayuki; et al.
Journal of Physics; Conference Series, 1293, p.012051_1 - 012051_9, 2019/10
Times Cited Count:6 Percentile:93.99(Materials Science, Multidisciplinary)Maruyama, Ryuji; Bigault, T.*; Saerbeck, T.*; Honecker, D.*; Soyama, Kazuhiko; Courtois, P.*
Crystals (Internet), 9(8), p.383_1 - 383_13, 2019/08
Times Cited Count:6 Percentile:49.84(Crystallography)The in-plane magnetic structure of a layered system composed of polycrystalline grains smaller than the ferromagnetic exchange length was studied to elucidate the mechanism controlling the magnetic properties considerably different from the bulk using polarized neutron scattering under grazing incidence geometry. The measured result, together with quantitative analysis based on the distorted wave Born approximation, showed that the in-plane length of the area with uniform orientation of moments ranging from 0.5 to 1.1 m is not significantly varied during the process of demagnetization followed by remagnetization. The obtained behavior of moments is in good agreement with the two-dimensional random anisotropy model where coherent magnetization rotation is dominant.
Maruyama, Ryuji; Yamazaki, Dai; Soyama, Kazuhiko
JPS Conference Proceedings (Internet), 22, p.011011_1 - 011011_5, 2018/11
Neutron multilayer mirrors are one of the most important optical elements for neutron scattering experiments. Good interface quality in terms of sharpness and smoothness plays a critical role in determining the performance of optical elements. We have shown that a multilayer with a large vertical correlation length and small lateral correlation length effectively suppresses the diffuse scattering intensity. In this study, the effect of the interface roughness correlation on the neutron reflectivity of the multilayer mirror is investigated using the reflectivity calculation based on the distorted wave Born approximation.
Maruyama, Ryuji; Yamazaki, Dai; Akutsu, Kazuhiro*; Hanashima, Takayasu*; Miyata, Noboru*; Aoki, Hiroyuki; Takeda, Masayasu; Soyama, Kazuhiko
Nuclear Instruments and Methods in Physics Research A, 888, p.70 - 78, 2018/04
Times Cited Count:6 Percentile:48.59(Instruments & Instrumentation)The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with fabricated showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the range where the correction for the polarization inefficiencies of the beamline works properly.
Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.
Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12
The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.