Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ohgama, Kazuya; Aliberti, G.*; Stauff, N. E.*; Oki, Shigeo; Kim, T. K.*
Mechanical Engineering Journal (Internet), 4(3), p.16-00592_1 - 16-00592_9, 2017/06
Ohgama, Kazuya; Aliberti, G.*; Stauff, N. E.*; Oki, Shigeo; Kim, T. K.*
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 8 Pages, 2017/04
Stauff, N. E.*; Ohgama, Kazuya; Aliberti, G.*; Oki, Shigeo; Kim, T. K.*
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 10 Pages, 2017/04
Ohgama, Kazuya; Aliberti, G.*; Stauff, N. E.*; Oki, Shigeo; Kim, T. K.*
Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 6 Pages, 2016/06
Under the cooperative effort of the Civil Nuclear Energy R&D Working Group within the framework of the U.S.-Japan bilateral, Argonne National Laboratory (ANL) and Japan Atomic Energy Agency (JAEA) have been performing benchmark study using Japan Sodium-cooled Fast Reactor (JSFR) design with metal fuel. In this benchmark study, core characteristic parameters at the beginning of cycle were evaluated by the best estimate deterministic and stochastic methodologies of ANL and JAEA. The results obtained by both institutions are agreed well with less than 200 pcm of discrepancy on the neutron multiplication factor, and less than 3% of discrepancy on the sodium void reactivity, Doppler reactivity, and control rod worth. The results by the stochastic and deterministic were compared in each party to investigate impacts of the deterministic approximation and to understand potential variations in the results due to different calculation methodologies employed. Impacts of the nuclear data libraries were also investigated using a sensitivity analysis methodology.
Buiron, L.*; Rimpault, G*; Fontaine, B.*; Kim, T. K.*; Stauff, N. E.*; Taiwo, T. A.*; Yamaji, Akifumi*; Gulliford, J.*; Fridmann, E.*; Pataki, I.*; et al.
Proceedings of International Conference on the Physics of Reactors; The Role of Reactor Physics toward a Sustainable Future (PHYSOR 2014) (CD-ROM), 16 Pages, 2014/09
Within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS) of the OECD, an international collaboration is ongoing on the neutronic analyses of several Generation-IV Sodium-cooled Fast Reactor (SFR) concepts. This paper summarizes the results obtained by participants from institutions of different countries (ANL, CEA, ENEA, HZDR, JAEA, CER, KIT, UIUC) for the large core numerical benchmarks. These results have been obtained using different calculation methods and analysis tools to estimate the core reactivity and isotopic composition evolution, neutronic feedbacks and power distribution. For the different core concepts analyzed, a satisfactory agreement was obtained between participants despite the different calculation schemes used. A good agreement was generally obtained when comparing compositions after burnup, the delayed neutron fraction, the Doppler coefficient, and the sodium void worth. However, some noticeable discrepancies between the k-effective values were observed and are explained in this paper. These are mostly due to the different neutronic libraries employed (JEFF3.1, ENDFB7.0 or JENDL-4.0) and to a lesser extent the calculations methods.