Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

ITER nuclear components, preparing for the construction and R&D results

Ioki, Kimihiro*; Akiba, Masato; Barabaschi, P.*; Barabash, V.*; Chiocchio, S.*; Daenner, W.*; Elio, F.*; Enoeda, Mikio; Ezato, Koichiro; Federici, G.*; et al.

Journal of Nuclear Materials, 329-333(1), p.31 - 38, 2004/08

 Times Cited Count:14 Percentile:66.09(Materials Science, Multidisciplinary)

The preparation of the procurement specifications is being progressed for key components. Progress has been made in the preparation of the procurement specifications for key nuclear components of ITER. Detailed design of the vacuum vessel (VV) and in-vessel components is being performed to consider fabrication methods and non-destructive tests (NDT). R&D activities are being carried out on vacuum vessel UT inspection with waves launched at an angle of 20 or 30 degree, on flow distribution tests of a two-channel model, on fabrication and testing of FW mockups and panels, on the blanket flexible support as a complete system including the housing, on the blanket co-axial pipe connection with guard vacuum for leak detection, and on divertor vertical target prototypes. The results give confidence in the validity of the design and identify possibilities of attractive alternate fabrication methods.

Journal Articles

Design improvements and R&D achievements for vacuum vessel and in-vessel components towards ITER construction

Ioki, Kimihiro*; Barabaschi, P.*; Barabash, V.*; Chiocchio, S.*; Daenner, W.*; Elio, F.*; Enoeda, Mikio; Gervash, A.*; Ibbott, C.*; Jones, L.*; et al.

Nuclear Fusion, 43(4), p.268 - 273, 2003/04

 Times Cited Count:21 Percentile:54.59(Physics, Fluids & Plasmas)

Although the basic concept of the vacuum vessel (VV) and in-vessel components of the ITER design has stayed the same, there have been several detailed design improvements resulting from efforts to raise reliability, to improve maintainability and to save money. One of the most important achievements in the VV R&D has been demonstration of the necessary fabrication and assembly tolerances. Recently the deformation due to cutting of the port extension was measured and it was shown that the deformation is small and acceptable. Further development of advanced methods of cutting, welding and NDT on a thick plate have been continued in order to refine manufacturing and improve cost and technical performance. With regard to the related FW/blanket and divertor designs, the R&D has resulted in the development of suitable technologies. Prototypes of the FW panel, the blanket shield block and the divertor components have been successfully fabricated.

Journal Articles

Progress on design and R&D of ITER FW/blanket

Ioki, Kimihiro*; Akiba, Masato; Cardella, A.*; Daenner, W.*; Elio, F.*; Enoeda, Mikio; Lorenzetto, P.*; Miki, Nobuharu*; Osaki, Toshio*; Rozov, V.*; et al.

Fusion Engineering and Design, 61-62, p.399 - 405, 2002/11

 Times Cited Count:11 Percentile:58.11(Nuclear Science & Technology)

We report progress on the ITER-FEAT Blanket design and R&D during 2001-2002. Four major sub-components (FW, shield body, flexible support and electrical connection) have been highlighted. Regarding the FW, design on a separate FW panel concept has progressed, and heat load tests on a small-scale mock-up have been successfully performed with 0.7 MW/m$$^{2}$$, 13000 cycles. Full-scale separate FW panels (dimensions: 0.9$$times$$0.25$$times$$0.07 m) have been fabricated by HIPing and brazing. Regarding the shield body, a radial flow cooling design has been developed, and full-scale partial mock-ups have been fabricated by using water-jet cutting. A separate FW panel was assembled with one the shield body mock-ups. Regarding the flexible support, mill-annealed Ti (easier fabricability) alloy has been selected, and the remote assembly has been considered in the design. In mechanical tests, the requires buckling strength and mechanical fatigue characteristics have been confirmed. Regarding the electrical connection, one-body structure design without welding joints has been developed. Mechanical fatigue tests in the 3 directions, have been carried out, and thermal fatigue tests and electrical tests in a solenoidal magnetic field have been performed. Feasibility of the design has been confirmed. Through progress on design and R&D of the blanket, cost reduction has been achieved, and feasibility of design and fabricability of the components have been confirmed.

3 (Records 1-3 displayed on this page)
  • 1