Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Stability of allowable flaw angles for high toughness ductile pipes subjected to bending stress in the ASME Code Section XI

Hasegawa, Kunio; Strnadel, B.*; Li, Y.; Lacroix, V.*

Journal of Pressure Vessel Technology, 144(6), p.061202_1 - 061202_6, 2022/12

 Times Cited Count:1 Percentile:20.34(Engineering, Mechanical)

When pipe walls are thin, part-through flaws are easily develop into through-wall flaws, and the likelihood of coolant leakage is high. The ASEM Code Section XI provides final allowable flaw angles of through-wall flaw for thin-wall pipes. The final allowable angles are applied to pipes in order to maintain structural integrity if the part-through flaws become through-wall flaws. To ensure that this stability is compromised, plastic collapse stresses for through-wall flaws are combined with allowable stresses. However, the final allowable angles of through-wall flaws are not identified for thin-walled pipes. This paper compares plastic collapse stresses of through-wall flaws and allowable stresses of part-through flaws for pipes. The comparison of these stresses is used to derive the final allowable angles of through-wall flaws. The angles can be expressed either in the form of exact solutions or as conventional options that are appropriate for various service level conditions.

Journal Articles

Safety assessment of allowable through-wall crack angles for pipes subjected to tensile loading

Hasegawa, Kunio; Strnadel, B.*; Lacroix, V.*; Udyawar, A.*

International Journal of Pressure Vessels and Piping, 199, p.104722_1 - 104722_5, 2022/10

 Times Cited Count:1 Percentile:28.33(Engineering, Multidisciplinary)

Fully plastic collapse stresses for high toughness pipes with circumferential cracks subjected to tensile loading can be predicted by Limit Load Criteria. The Limit Load Criteria are provided by the ASME Code Section XI. Allowable membrane stresses for part-through cracks were determined by plastic collapse stresses in combination with safety factors. The allowable stresses decrease with increasing angles of the part-through cracks. When crack angles are large, the allowable stresses of the part-through cracks are larger than the collapse stresses of through-wall cracks. For such large cracks, allowable stresses greater than the collapse stresses cause instability, and are thus detrimental to pipe integrity, especially in thin-wall pipes. In order to avoid the anxiety, it is necessary to establish maximum allowable crack angles. This paper proposes maximum allowable crack angles for allowable stresses.

Journal Articles

Allowable cracks related to penetration for part-through cracks in pipes subjected to bending stresses

Hasegawa, Kunio; Li, Y.; Strnadel, B.*; Udyawar, A.*

Journal of Pressure Vessel Technology, 144(5), p.051305_1 - 051305_6, 2022/10

 Times Cited Count:1 Percentile:20.34(Engineering, Mechanical)

Fully plastic collapse stresses for circumferentially part-through cracked pipes subjected to bending stresses are estimated by Limit Load Criteria provided by the ASME Code Section XI. Allowable crack depths were determined by using the Limit Load Criteria and that are tabulated in the ASME Code Section XI for different plant service level conditions. On the other hand, crack penetration bending stresses for part-through cracked pipes were estimated by using the Local Approach of Limit Load Criteria. By using these Criteria, the study presented in this paper obtained allowable crack depths at penetration for circumferentially part-through cracked pipes. Comparing the allowable crack depths obtained by both methods for each service level, it is evident that the allowable crack depths at penetration calculated by the Local Approach of Limit Load Criteria are almost always smaller than those at fully plastic collapse stresses calculated by the Limit Load Criteria. It was found that the allowable crack depths provided by the ASME Code Section XI are less conservative for crack penetrations.

Journal Articles

Fully plastic failure stresses and allowable crack sizes for circumferentially surface-cracked pipes subjected to tensile loading

Hasegawa, Kunio*; Dvo$v{r}$$'a$k, D.*; Mare$v{s}$, V.*; Strnadel, B.*; Li, Y.

Journal of Pressure Vessel Technology, 144(1), p.011303_1 - 011303_6, 2022/02

 Times Cited Count:5 Percentile:69.52(Engineering, Mechanical)

Fully plastic failure stress for circumferentially surface-cracked pipe subjected to tensile loading can be estimated by means of limit load criterion (LLC) based on the net-section stress approach. LLC of the first type (labelled LLC-1) was derived from the balance of uniaxial forces. LLC of the second type, derived from the balance of bending moments and axial forces (labelled LLC-2), is adopted in Section XI of the ASME (American Society of Mechanical Engineering) Code. From the literature survey of experimental data, failure stresses obtained by both types of LLCs were compared with the experimental data. It can be stated that failure stresses calculated by LLC-1 are better than those calculated by LLC-2 for shallow cracks. On the contrary, for deep cracks, LLC-2 predictions of failure stresses are fairly close to the experimental data. It can be stated that the allowable cracks given in Section XI of the ASME Code are conservative.

Journal Articles

Plastic collapse stresses based on flaw combination rules for pipes containing two circumferential similar flaws

Hasegawa, Kunio; Li, Y.; Kim, Y.-J.*; Lacroix, V.*; Strnadel, B.*

Journal of Pressure Vessel Technology, 141(3), p.031201_1 - 031201_5, 2019/06

 Times Cited Count:0 Percentile:0(Engineering, Mechanical)

When discrete multiple flaws are in the same plane, and they are close to each other, it can be determined whether they are combined or standalone in accordance with combination rules provided by Fitness-For-Service (FFS) codes. However, specific criteria of the rules are different amongst these FFS codes. On the other hand, plastic collapse bending stresses for stainless steel pipes with two circumferential similar flaws were obtained by experiments and the prediction procedure for collapse stresses for pipes with two similar flaws were developed analytically. Using the experimental data and the analytical procedure, plastic collapse stresses for pipes with two similar flaws are compared with the stresses in compliance with the flaw combination criteria. It is shown that the calculated plastic collapse stresses based on the flaw combination criteria are significantly different from the experimental and analytical stresses.

Journal Articles

Stress intensity factors for transformed surface flaws and remaining fatigue lives based on flaw-to-surface proximity rules

Hasegawa, Kunio*; Strnadel, B.*; Li, Y.; Lacroix, V.*

Journal of Pressure Vessel Technology, 140(5), p.051204_1 - 051204_7, 2018/10

 Times Cited Count:0 Percentile:0(Engineering, Mechanical)

Journal Articles

Alternative characterization rules for multiple surface planar flaws

Dulieu, P.*; Lacroix, V.*; Hasegawa, Kunio; Li, Y.; Strnadel, B.*

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 10 Pages, 2018/07

Journal Articles

Recharacterization of subsurface flaw to surface flaw based on equivalent fatigue crack growth rate

Lacroix, V.*; Li, Y.; Strnadel, B.*; Hasegawa, Kunio*

Journal of Pressure Vessel Technology, 138(2), p.024701_1 - 024701_6, 2016/04

 Times Cited Count:5 Percentile:27.87(Engineering, Mechanical)

A subsurface flaw located near a component surface is transformed to a surface flaw in accordance with a flaw-to-surface proximity rule. The re-characterization process from subsurface to surface flaw is adopted in all fitness-for-service (FFS) codes. However, the criteria of the re-characterizations are different among the FFS codes. In addition, the proximity factors in the rules are defined by constant values, irrespective of flaw aspect ratios. This paper describes the stress intensity factor interaction between the subsurface flaw and component free surface, and proposes a proximity factor from the point of view of fatigue crack growth rates.

Journal Articles

Re-characterization of subsurface flaw to surface flaw based on equivalent fatigue crack growth rate

Hasegawa, Kunio*; Li, Y.; Lacroix, V.*; Strnadel, B.*

Proceedings of 2015 ASME Pressure Vessels and Piping Conference (PVP 2015) (Internet), 7 Pages, 2015/07

A subsurface flaw located near a component surface is transformed to a surface flaw in accordance with a flaw- to-surface proximity rule. The re-characterization process from subsurface to surface flaw is adopted in all fitness-for-service (FFS) codes. However, the criteria of the re-characterizations are different among the FFS codes. In addition, the proximity factors in the rules are defined by constant values, irrespective of flaw aspect ratios. This paper describes the stress intensity factor interaction between the subsurface flaw and component free surface, and proposes a proximity factor from the view point of fatigue crack growth rates.

9 (Records 1-9 displayed on this page)
  • 1