Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Wang, Y. W.*; Wang, H. H.*; Su, Y. H.; Xu, P. G.; Shinohara, Takenao
Materials Science & Engineering A, 887, p.145768_1 - 145768_13, 2023/11
Oikawa, Kenichi; Sato, Hirotaka*; Watanabe, Kenichi*; Su, Y. H.; Shinohara, Takenao; Kai, Tetsuya; Kiyanagi, Yoshiaki*; Hasemi, Hiroyuki
Journal of Physics; Conference Series, 2605, p.012013_1 - 012013_6, 2023/10
Quach, N. M.*; Ngo, M. C.*; Yang, Y.*; Nguyen, T. B.*; Nguyen, V. T.*; Fujita, Yoshitaka; Do, T. M. D.*; Nakayama, Tadachika*; Suzuki, Tatsuya*; Suematsu, Hisayuki*
Journal of Radioanalytical and Nuclear Chemistry, 332(10), p.4057 - 4064, 2023/10
Technetium-99m (Tc) is the most widely used medical radioisotope in the world and is produced from molybdenum-99 (
Mo). Production of
Mo via the neutron capture method draws attention as an alternative to fission-derived
Mo due to non-proliferation issues, but the specific radioactivity of
Mo is extremely low. In this work, a porous
-MoO
wire was prepared as an irradiation target in order to improve the specific activity by extracting
Mo. Porous
-MoO
wire is synthesized from Mo metal wire by a two-step heating procedure. The hot atom effect of
Mo was confirmed by activity and isotope measurements of the porous
-MoO
wire after neutron irradiation and the water used for extraction. In term of the extraction effectiveness, the effectiveness of
Mo extraction in the porous
-MoO
wire was comparable to that of commercial
-MoO
powder.
Su, Y. H.; Oikawa, Kenichi; Shinohara, Takenao; Kai, Tetsuya; Horino, Takashi*; Idohara, Osamu*; Misaka, Yoshitaka*; Tomota, Yo*
International Journal of Fatigue, 174, p.107729_1 - 107729_12, 2023/09
Times Cited Count:1 Percentile:72.54(Engineering, Mechanical)Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.
Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08
Gamma decays were observed in Ca and
Ca following quasi-free one-proton knockout reactions from
Sc. For
Ca, a
ray transition was measured to be 1456(12) keV, while for
Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the
decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for
level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the
and
orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic
Ca and potentially drives the dripline of Ca isotopes to
Ca or even beyond.
Pohl, T.*; Sun, Y. L.*; Obertelli, A.*; Lee, J.*; Gmez-Ramos, M.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Cai, B. S.*; Yuan, C. X.*; Brown, B. A.*; et al.
Physical Review Letters, 130(17), p.172501_1 - 172501_8, 2023/04
Times Cited Count:2 Percentile:94.54(Physics, Multidisciplinary)We report on the first proton-induced single proton- and neutron-removal reactions from the neutron deficient O nucleus with large Fermi-surface asymmetry at
100 MeV/nucleon. Our results provide the first quantitative contributions of multiple reaction mechanisms including the quasifree knockout, inelastic scattering, and nucleon transfer processes. It is shown that the inelastic scattering and nucleon transfer, usually neglected at such energy regime, contribute about 50% and 30% to the loosely bound proton and deeply bound neutron removal, respectively.
Ao, N.*; Zhang, H.*; Xu, H. H.*; Wu, S. C.*; Liu, D.*; Xu, P. G.; Su, Y. H.; Kang, Q. H.*; Kang, G. Z.*
Engineering Fracture Mechanics, 281, p.109166_1 - 109166_14, 2023/03
Times Cited Count:0 Percentile:69.39(Mechanics)Zhang, H.*; Wu, S. C.*; Ao, N.*; Zhang, J. W.*; Li, H.*; Zhou, L.*; Xu, P. G.; Su, Y. H.
International Journal of Fatigue, 166, p.107296_1 - 107296_11, 2023/01
Times Cited Count:0 Percentile:88.66(Engineering, Mechanical)Elekes, Z.*; Juhsz, M. M.*; Sohler, D.*; Sieja, K.*; Yoshida, Kazuki; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review C, 106(6), p.064321_1 - 064321_10, 2022/12
Times Cited Count:0 Percentile:0.02(Physics, Nuclear)The low-lying level structure of V and
V was investigated for the first time. The neutron knockout reaction and inelastic proton scattering were applied for
V while the neutron knock-out reaction provided the data for
V. Four and five new transitions were determined for
V and
V, respectively. Based on the comparison to our shell-model calculations using the Lenzi-Nowacki-Poves-Sieja (LNPS) interaction, three of the observed
rays for each isotope could be placed in the level scheme and assigned to the decay of the first 11/2
and 9/2
levels. The (
,
) excitation cross sections for
V were analyzed by the coupled-channels formalism assuming quadrupole plus hexadecapole deformations. Due to the role of the hexadecapole deformation,
V could not be unambiguously placed on the island of inversion.
Enciu, M.*; Liu, H. N.*; Obertelli, A.*; Doornenbal, P.*; Nowacki, F.*; Ogata, Kazuyuki*; Poves, A.*; Yoshida, Kazuki; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review Letters, 129(26), p.262501_1 - 262501_7, 2022/12
Times Cited Count:0 Percentile:35.17(Physics, Multidisciplinary)The one-neutron knockout from Ca was performed at
230 MeV/nucleon combined with prompt
spectroscopy. The momentum distributions corresponding to the removal of
and
neutrons were measured. The cross sections are consistent with a shell closure at the neutron number
, found as strong as at
and
in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron
and
orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the
orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number.
Fujita, Yoshitaka; Seki, Misaki; Ngo, M. C.*; Do, T. M. D.*; Hu, X.*; Yang, Y.*; Takeuchi, Tomoaki; Nakano, Hiroko; Fujihara, Yasuyuki*; Yoshinaga, Hisao*; et al.
KURNS Progress Report 2021, P. 118, 2022/07
no abstracts in English
Koiwai, Takuma*; Wimmer, K.*; Doornenbal, P.*; Obertelli, A.*; Barbieri, C.*; Duguet, T.*; Holt, J. D.*; Miyagi, Takayuki*; Navrtil, P.*; Ogata, Kazuyuki*; et al.
Physics Letters B, 827, p.136953_1 - 136953_7, 2022/04
Times Cited Count:2 Percentile:61.15(Astronomy & Astrophysics)no abstracts in English
Sasada, Seiji*; Takahashi, Yoshihito*; Takeuchi, Keisuke*; Hiroi, Kosuke; Su, Y. H.; Shinohara, Takenao; Watanabe, Kenichi*; Uritani, Akira*
Japanese Journal of Applied Physics, 61(4), p.046004_1 - 046004_8, 2022/03
Fujita, Yoshitaka; Niizeki, Tomotake*; Fukumitsu, Nobuyoshi*; Ariga, Katsuhiko*; Yamauchi, Yusuke*; Malgras, V.*; Kaneti, Y. V.*; Liu, C.-H.*; Hatano, Kentaro*; Suematsu, Hisayuki*; et al.
Bulletin of the Chemical Society of Japan, 95(1), p.129 - 137, 2022/01
Times Cited Count:5 Percentile:71.6(Chemistry, Multidisciplinary)In this work, the mechanisms responsible for the adsorption of molybdate ions on alumina are investigated using in-depth surface analyses carried out on alumina specimens immersed in solutions containing different molybdate ions at different pH values. The obtained results reveal that when alumina is immersed in an acidic solution containing molybdate ions, the hydroxyl groups present on the surface are removed to generate positively charged sites, and molybdate ions (MoO or AlMo
O
H
) are adsorbed by electrostatic interaction. Alumina dissolves slightly in an acidic solution to form AlMo
O
H
, which is more easily desorbed than MoO
. Furthermore, the enhancement in the Mo adsorption or desorption property may be achieved by enriching the surface of the alumina adsorbent with many -OH groups and optimizing Mo solution to adsorb molybdate ions on alumina as MoO
ions. These findings will assist researchers in engineering more efficient and stable alumina-based adsorbents for molybdenum adsorption used in medical radioisotope (
Mo/
Tc) generators.
Hashimoto, Shoji*; Tanaka, Taku*; Komatsu, Masabumi*; Gonze, M.-A.*; Sakashita, Wataru*; Kurikami, Hiroshi; Nishina, Kazuya*; Ota, Masakazu; Ohashi, Shinta*; Calmon, P.*; et al.
Journal of Environmental Radioactivity, 238-239, p.106721_1 - 106721_10, 2021/11
Times Cited Count:8 Percentile:58.2(Environmental Sciences)This study was aimed at analysing performance of models for radiocesium migration mainly in evergreen coniferous forest in Fukushima, by inter-comparison between models of several research teams. The exercise included two scenarios of countermeasures against the contamination, namely removal of soil surface litter and forest renewal, and a specific konara oak forest scenario in addition to the evergreen forest scenario. All the models reproduced trend of time evolution of radiocesium inventories and concentrations in each of the components in forest such as leaf and organic soil layer. However, the variations between models enlarged in long-term predictions over 50 years after the fallout, meaning continuous field monitoring and model verification/validation is necessary.
Yan, S. Q.*; Li, X. Y.*; Nishio, Katsuhisa; Lugaro, M.*; Li, Z. H.*; Makii, Hiroyuki; Pignatari, M.*; Wang, Y. B.*; Orlandi, R.; Hirose, Kentaro; et al.
Astrophysical Journal, 919(2), p.84_1 - 84_7, 2021/10
Times Cited Count:1 Percentile:10.47(Astronomy & Astrophysics)Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Chen, S.*; Chung, L. X.*; Duguet, T.*; Gmez-Ramos, M.*; et al.
Physical Review C, 104(4), p.044331_1 - 044331_16, 2021/10
Times Cited Count:3 Percentile:52.17(Physics, Nuclear)no abstracts in English
Ishitsuka, Etsuo; Mitsui, Wataru*; Yamamoto, Yudai*; Nakagawa, Kyoichi*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Nagasumi, Satoru; Takamatsu, Kuniyoshi; Kenzhina, I.*; et al.
JAEA-Technology 2021-016, 16 Pages, 2021/09
As a summer holiday practical training 2020, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the downsizing of reactor core were studied by the MVP-BURN. As a result, it is clear that a 1.6 m radius reactor core, containing 54 (183 layers) fuel blocks with 20% enrichment of
U, and BeO neutron reflector, could operate continuously for 30 years with thermal power of 5 MW. Number of fuel blocks of this compact core is 36% of the HTTR core. As a next step, the further downsizing of core by changing materials of the fuel block will be studied.
Hwang, I. Y.*; Lee, K. H.*; Chung, J.-H.*; Ikeuchi, Kazuhiko*; Garlea, V. O.*; Yamauchi, Hiroki; Akatsu, Mitsuhiro*; Shamoto, Shinichi
Journal of the Physical Society of Japan, 90(6), p.064708_1 - 064708_6, 2021/06
Times Cited Count:2 Percentile:34.04(Physics, Multidisciplinary)no abstracts in English
Browne, F.*; Chen, S.*; Doornenbal, P.*; Obertelli, A.*; Ogata, Kazuyuki*; Utsuno, Yutaka; Yoshida, Kazuki; Achouri, N. L.*; Baba, Hidetada*; Calvet, D.*; et al.
Physical Review Letters, 126(25), p.252501_1 - 252501_7, 2021/06
Times Cited Count:8 Percentile:73.51(Physics, Multidisciplinary)Direct proton-knockout reactions of Sc were studied at the RIKEN Radioactive Isotope Beam Factory. Populated states of
Ca were investigated through
-ray and invariant-mass spectroscopy. Level energies were calculated from the nuclear shell model employing a phenomenological inter-nucleon interaction. Theoretical cross sections to states were calculated from distorted-wave impulse approximation estimates multiplied by the shell model spectroscopic factors. Despite the calculations showing a significant amplitude of excited neutron configurations in the ground-state of
Sc, valence proton removals populated predominantly the ground-state of
Ca. This counter-intuitive result is attributed to pairing effects leading to a dominance of the ground-state spectroscopic factor. Owing to the ubiquity of the pairing interaction, this argument should be generally applicable to direct knockout reactions from odd-even to even-even nuclei.