Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
吹留 博一*; 高橋 良太*; 阿部 峻佑*; 今泉 京*; 半田 浩之*; Kang, H. C.*; 唐澤 宏美*; 末光 哲也*; 尾辻 泰一*; 遠田 義晴*; et al.
Journal of Materials Chemistry, 21(43), p.17242 - 17248, 2011/11
被引用回数:28 パーセンタイル:62.37(Chemistry, Physical)Graphene is a promising material in the next-generation devices. Large-scale epitaxial graphene should be grown on Si substrates to take over the accumulated technologies for integrated devices. We have for this reason developed epitaxy of graphene on Si (GOS) and device operation of the backgate field-effect transistors (FETs) using GOS has been confirmed. It is demonstrated in this paper that the GOS method enables us to tune the structural and electronic properties of graphene in terms of the crystallographic orientation of the Si substrate. Furthermore, it is shown that the uniformity of the GOS process within a sizable area enables us to reliably fabricate topgate FETs using conventional lithography techniques. GOS can be thus the key material in the next-generation devices owing to the tunability of the electronic structure by the crystallographic orientation of the Si substrate.
吹留 博一*; 高橋 良太*; 宮本 優*; 半田 浩之*; Kang, H. C.*; 唐澤 宏美*; 末光 哲也*; 尾辻 泰一*; 吉越 章隆; 寺岡 有殿; et al.
no journal, ,
Si基板上にSiCを形成し、その最表面を熱的にグラフェンに変化させると、Si基板上にグラフェン層がエピタキシャル成長する(グラフェン=オン=シリコン;GOS)。このグラフェン形成ではSi基板上にまずSiCをガスソース分子線エピタキシー法でエピ成長させる。通常はSi(111), (110), (100)基板上に3C-SiC(111), (110), (100)面が成長する。それらを超高真空中で1523Kに加熱することでSi原子を昇華させてSiC表面を炭化させる。3C-SiC(111)ばかりでなく3C-SiC(100)と(110)でもグラフェンが形成されることがラマン散乱分光と放射光光電子分光で明らかになった。ラマンスペクトルではD, G, G'バンドが観測され、C1s光電子スペクトルではspが観測された。このように三つの表面で等しくグラフェン成長に成功したことは、ポストSi技術開発でGOS技術が有効であることを示唆している。
吹留 博一*; 小嗣 真人*; 大河内 拓雄*; 吉越 章隆; 寺岡 有殿; 遠田 義晴*; 木下 豊彦*; 末光 哲也*; 尾辻 泰一*; 末光 眞希*
no journal, ,
We have developed epitaxy of graphene on Si (GOS) and device operation of GOS-based field-effect transistor (GOS-FET). In this paper, we will demonstrate that the stacking, the interface structure, and the electronic properties of GOS can be controlled by tuning surface termination and symmetry of 3C-SiC(111)/Si, with a proper choice of Si substrate and SiC growth conditions. On the Si-terminated 3C-SiC(111)/Si(111) surface GOS is Bernal-stacked with a band splitting, while on the C-terminated 3C-SiC(111)/Si(110) surface GOS is turbostratically stacked without a band splitting. This novel epitaxy techniques enable us to precisely control electronic properties of GOS for the forthcoming devices. Furthermore, it is shown that the macroscopic uniformity of the GOS within a sizable area makes it possible to fabricate a topgate GOS-FET using Si device technologies.