Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Benchmark simulation code for the thermal-hydraulics design tool of the accelerator-driven system; Validation and benchmark simulation of flow behavior around the beam window

Yamashita, Susumu; Kondo, Nao; Sugawara, Takanori; Monji, Hideaki*; Yoshida, Hiroyuki

Journal of Nuclear Science and Technology, 22 Pages, 2023/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

To confirm the validity of the thermal-hydraulics design tool based on the Ansys Fluent, we used a detailed computational fluid dynamics code named JAEA Utility Program for Interdisciplinary Thermal-hydraulics Engineering and Research (JUPITER) for the thermal-hydraulics around the beam window (BW) of the Accelerator-Driven System (ADS). The Fluent uses the Reynolds-Averaged Navier-Stokes (RANS) model and can quickly calculate the turbulent flow around the BW as a BW design tool. At first, we compared the results of JUPITER with the experimental results using a mock-up BW system in water to confirm the validity of JUPITER. As a result, we confirmed that numerical results are in good agreement with the experimental results. Thus, we showed that JUPITER could be used as a benchmark code. We also performed a benchmark simulation for the Fluent calculation using validated JUPITER to show the applicability of JUPITER as an alternative of experiments. As a result, the mean values around the BW agreed with each other, e.g., the mean velocity profile for stream and horizontal directions. Therefore, we confirmed that JUPITER showed a good performance in validating the thermal-hydraulics design tool as a fluid dynamics solver. Moreover, Fluent has enough accuracy as a thermal-hydraulics design tool for the ADS.

Journal Articles

Vibration of cantilever by jet impinging in axial direction

Tobita, Daiki*; Monji, Hideaki*; Yamashita, Susumu; Horiguchi, Naoki; Yoshida, Hiroyuki; Sugawara, Takanori

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 5 Pages, 2022/10

Journal Articles

The H-Invitational Database (H-InvDB); A Comprehensive annotation resource for human genes and transcripts

Yamasaki, Chisato*; Murakami, Katsuhiko*; Fujii, Yasuyuki*; Sato, Yoshiharu*; Harada, Erimi*; Takeda, Junichi*; Taniya, Takayuki*; Sakate, Ryuichi*; Kikugawa, Shingo*; Shimada, Makoto*; et al.

Nucleic Acids Research, 36(Database), p.D793 - D799, 2008/01

 Times Cited Count:51 Percentile:71.25(Biochemistry & Molecular Biology)

Here we report the new features and improvements in our latest release of the H-Invitational Database, a comprehensive annotation resource for human genes and transcripts. H-InvDB, originally developed as an integrated database of the human transcriptome based on extensive annotation of large sets of fulllength cDNA (FLcDNA) clones, now provides annotation for 120 558 human mRNAs extracted from the International Nucleotide Sequence Databases (INSD), in addition to 54 978 human FLcDNAs, in the latest release H-InvDB. We mapped those human transcripts onto the human genome sequences (NCBI build 36.1) and determined 34 699 human gene clusters, which could define 34 057 protein-coding and 642 non-protein-coding loci; 858 transcribed loci overlapped with predicted pseudogenes.

Oral presentation

Effect of stiffness on vibration of the model of ADS beam window due to impinging jet

Hiratsuka, Sota*; Tobita, Daiki*; Monji, Hideaki*; Yamashita, Susumu; Kondo, Nao; Yoshida, Hiroyuki; Sugawara, Takanori

no journal, , 

In the ADS, a cooling method is being considered in which coolant is sprayed directly from a nozzle installed in front of the beam window because the beam window becomes hot due to the passage of the proton beam emitted by the accelerator. In this method, an impinging jet is formed around the hemispherical beam window, which induces oscillation of the beam window. Therefore, from a safety point of view, it is very important to understand the oscillation characteristics of the beam window caused by the impinging jet. In this presentation, we will discuss the results of a study on the effect of stiffness on the oscillation of a beam window caused by an impinging jet by means of a mock-up experiment.

4 (Records 1-4 displayed on this page)
  • 1