Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 186

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Long-term monitoring of the stability of the gallery in Horonobe Underground Research Laboratory

Aoyagi, Kazuhei; Sakurai, Akitaka; Miyara, Nobukatsu; Sugita, Yutaka

JAEA-Research 2020-004, 68 Pages, 2020/06

JAEA-Research-2020-004.pdf:6.4MB
JAEA-Research-2020-004-appendix1(DVD-ROM).zip:636.84MB
JAEA-Research-2020-004-appendix2(DVD-ROM).zip:457.72MB
JAEA-Research-2020-004-appendix3(DVD-ROM).zip:595.19MB

In construction and operational phase of a high-level radioactive waste disposal project, it is necessary to monitor on mechanical stability of underground facility for long term. In this research, we measured the displacement of the rock around the gallery and the stress acting on support materials. Furthermore, we investigated the durability of measurement sensor installed in the rock mass and the support material such as concreate lining and steel support. As a result, optical fiber sensor is appropriate for measurement of the displacement of rock mass around the gallery, while it is enough to apply the conventional electric sensor for the measurement of stress acting on the support material in the geological environment (soft rock and low inflow). The result of the measurement in the fault zone in 350 m gallery, show that the stresses acting on both shotcrete and steel arch lib exceeded the value which will cause the instability of the gallery. However, as, we found no crack on the surface of the shotcrete. By observation on the surface of shotcrete, thus, it was concluded that careful observation of shotcrete around that section in addition to the monitoring the measured stress was necessary to continue. In other measurement sections, there was no risk for the instability of the gallery as a result of the investigation of the measurement result.

JAEA Reports

Synthesis report on the R&D for the Horonobe Underground Research Laboratory; Project carried out during fiscal years 2015-2019

Nakayama, Masashi; Saiga, Atsushi; Kimura, Shun; Mochizuki, Akihito; Aoyagi, Kazuhei; Ono, Hirokazu; Miyakawa, Kazuya; Takeda, Masaki; Hayano, Akira; Matsuoka, Toshiyuki; et al.

JAEA-Research 2019-013, 276 Pages, 2020/03

JAEA-Research-2019-013.pdf:18.72MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The present report summarizes the research and development activities of these 3 important issues carried out during 3rd Medium to Long-term Research Phase.

Journal Articles

A Measurement method of long-term mechanical stability of support and rock mass after the excavation of galleries; Case study in Horonobe Underground Research Center

Aoyagi, Kazuhei; Sakurai, Akitaka; Miyara, Nobukatsu; Sugita, Yutaka; Tanai, Kenji

Shigen, Sozai Koenshu (Internet), 6(2), 7 Pages, 2019/09

no abstracts in English

Journal Articles

Evaluation of the excavation disturbed zone of sedimentary rock in the Horonobe Underground Research Laboratory

Kubota, Kenji*; Aoyagi, Kazuhei; Sugita, Yutaka

Proceedings of 2019 Rock Dynamics Summit in Okinawa (USB Flash Drive), p.729 - 733, 2019/05

During the excavation of shafts and galleries in the deep subsurface for disposing of high-level radioactive waste, an excavation disturbed zone (EdZ) or excavation damaged zone (EDZ) is developed around the shafts and galleries. Such zones could influence the transfer behavior of radioactive nuclides, and it is therefore important to understand the behavior of the EdZ or EDZ. We performed in situ experiments before, during, and after gallery excavation in galleries of 140 and 250 m in depth in an area of soft sedimentary rock in Japan. The results demonstrate that the extent of fractures induced by the gallery excavation related with EDZ was confined to about 0.45 m from the gallery wall in the 140 m gallery and to about 1 m from the gallery wall in the 250 m gallery. The extent of the unsaturated zone related with EdZ was about 1 m in the 140 m gallery, but an unsaturated zone did not appear in the 250 m gallery.

JAEA Reports

A Study of the evaluation of the excavation damaged zone in the Horonobe Underground Research Laboratory, 1; Investigation in the 140 m gallery (Joint research)

Sugita, Yutaka; Aoyagi, Kazuhei; Kubota, Kenji*; Nakata, Eiji*; Oyama, Takahiro*

JAEA-Research 2018-002, 72 Pages, 2018/06

JAEA-Research-2018-002.pdf:6.16MB

In a excavation of shafts and galleries in the deep underground for disposing radioactive waste, an excavation damaged zone (EDZ) is developed around the galleries and shafts owing to the stress redistribution. Since the characteristic changes of the rock mass in the EDZ affects the radionuclides migration behavior, it is important to understand the long-term behavior of the EDZ. Thus, we performed the in situ experiment to investigate the long-term behavior of EDZ as part of the collaborative research between Japan Atomic Energy Agency and Central Research Institute of Electric Power Industry in the 140m gallery in the Horonobe Underground Research Laboratory. In this research, we investigated the extent, mechanism of the change of hydro-mechanical characteristic, and long-term behavior of the EDZ on the basis of the comprehensive estimation of the results of the observation of the drift wall and the various investigations using boreholes such as geological investigation, the seismic and resistivity tomography, hydraulic test, water content monitoring, borehole loading test, convergence measurement, and so on. In addition, we clarified applicability and future tasks of the testing method used in this research for the investigation of the long-term behavior of the EDZ.

Journal Articles

Development of a design support system for geological disposal of radioactive waste using a CIM concept

Sugita, Yutaka; Kageyama, Takeshi*; Makino, Hitoshi; Shimbo, Hiroshi*; Hane, Koji*; Kobayashi, Yuichi*; Fujisawa, Yasuo*; Makanae, Koji*; Yabuki, Nobuyoshi*

Proceedings of 17th International Conference on Computing in Civil and Building Engineering (ICCCBE 2018) (Internet), 8 Pages, 2018/06

This paper presents status of development of the iSRE (integrated system for repository engineering) as a design supporting system that enables rational designing of a geological disposal repository. The complimentary technique of construction information modeling/management (CIM) has been employed for the development of iSRE. CIM uses a shared three dimensional (3D) model of associated data through common data models. In this paper, as a design support system that conforms to the characteristics of information management about engineering technology represented by repetition of design during the disposal project period, we examined and designed the function of the "iSRE", constructed a prototype, and confirmed the function through a trial simulating actual work in the disposal project. As a result, with respect to the functions of DB and IF of the iSRE, we got a prospect that these functions can be the foundation of information management on engineering technology, and development of the prototype of the iSRE and its test run extracted issues for practical use of such system.

Journal Articles

Investigation of the excavation disturbed zone due to the excavation of horizontal galleries; Study in the Horonobe Underground Research Laboratory

Kubota, Kenji*; Aoyagi, Kazuhei; Sugita, Yutaka

Koeki Shadan Hojin Butsuri Tansa Gakkai Dai-138-Kai (Heisei-30-Nendo Shuki) Gakujutsu Koenkai Koen Rombunshu, p.51 - 54, 2018/05

In an excavation of shafts and galleries in the deep underground for disposing high level radioactive waste, an excavation disturbed zone (EdZ) or excavation damaged zone (EDZ) is developed around the shafts and galleries owing to the stress redistribution. It is important to understand the behavior of the EdZ or EDZ because these zone could have an effect on the transfer behavior of radioactive nuclide. Therefore, the authors performed the in situ experiment to investigate the behavior of EdZ or EDZ in the 140m and 250m gallery in the Horonobe Underground Research Laboratory. From the result of the experiments, the authors compared the characteristics of EdZ or EDZ between those in 140m and 250m gallery. The extent of the fractures induced by the gallery excavation, i.e., EDZ was about 0.45m in the 140m gallery and about 1m in the 250m gallery. The extent of the unsaturated zones related with EdZ was about 1m in the 140m gallery, however, unsaturated zone was not appeared in the 250m gallery.

Journal Articles

Mechanical and rheological characteristics of the siliceous mudstone at the Horonobe Underground Research Laboratory site

Hashiba, Kimihiro*; Fukui, Katsunori*; Sugita, Yutaka; Aoyagi, Kazuhei

Proceedings of ITA-AITES World Tunnel Congress 2017 (WTC 2017) (USB Flash Drive), 8 Pages, 2017/06

It is essential to understand the mechanical and rheological characteristics of diatomaceous and siliceous mudstones for the construction of underground structures and for the assessment of their long-term stability. In this study, the siliceous mudstone of the Wakkanai Formation was applied to various laboratory tests: compression test, creep test, relaxation test, drying shrinkage test, and slaking test. The test results showed that water has a major impact on the mechanical and rheological properties of the siliceous mudstone. In addition, water content at a tunnel wall was measured in the Horonobe URL. Comparing the results of the laboratory tests and the in situ measurement, the effect of water on the tunnel stability was discussed.

Journal Articles

Mechanical characteristics of rock segment for reducing amount of cement use and stability of drift tunnel

Tada, Hiroyuki*; Kumasaka, Hiroo*; Saito, Akira*; Nakaya, Atsushi*; Ishii, Takashi*; Fujita, Tomoo; Sugita, Yutaka; Nakama, Shigeo; Sanada, Masanori*

Doboku Gakkai Rombunshu, F2 (Chika Kukan Kenkyu) (Internet), 73(1), p.11 - 28, 2017/03

This study examined the mechanical characteristics of rock segments and backfill materials and analyzed the stability of the drift that is supported by the rock segments and gravel backfill. The results confirmed the technical aspects of the formation of the rock segments and the effectiveness of the planned efforts to further reduce the amount of cement used.

JAEA Reports

Basic properties of the concrete using the low alkaline cement (HFSC) developed by JAEA

Seno, Yasuhiro*; Nakayama, Masashi; Sugita, Yutaka; Tanai, Kenji; Fujita, Tomoo

JAEA-Data/Code 2016-011, 164 Pages, 2016/11

JAEA-Data-Code-2016-011.pdf:8.45MB
JAEA-Data-Code-2016-011-appendix(CD-ROM).zip:0.1MB

The cementitious materials are used as candidate materials for the tunnel support of the deep geological repository of high-level radioactive wastes (HLW).Generally the pH of leachate from concrete mixed Ordinary Portland Cement (OPC) shows a range of 12 to 13. The barrier function of bentonite used as a buffer material and that of host rock might be damaged by the high alkaline leachate from cementitious materials. Therefore, low alkalinity that does not damage each barrier function is necessary for cementitious materials used for the tunnel support system of the HLW geological repository. JAEA has developed a low alkaline cement named as HFSC (Highly Fly-ash contained Silicafume Cement) which the pH of the cement leachate could lower approximately 11. We have confirmed the applicability of HFSC for the tunnel support materials, by using experimentally as the shotcreting materials to the part of gallery wall at 140m, 250m and 350m depth in Horonobe Underground Research Laboratory. And moreover, HFSC has been used as the cast-in-place concrete for the shaft lining concrete at the depth of 374m-380m. This Data/Code summarized the past HFSC mix proportion test results about the fresh concrete properties and hardened concrete properties, in order to offer the information as a reference for selecting the mix proportion of HFSC concrete adopted to the disposal galleries et al. in the future.

JAEA Reports

Long-term immersion experiments of low alkaline cementitious materials

Seno, Yasuhiro*; Noguchi, Akira*; Nakayama, Masashi; Sugita, Yutaka; Suto, Shunkichi; Tanai, Kenji; Fujita, Tomoo; Sato, Haruo*

JAEA-Technology 2016-011, 20 Pages, 2016/07

JAEA-Technology-2016-011.pdf:7.56MB

Cementitious materials are expected to be used for the construction of an underground repository for the geological disposal of radioactive wastes. Ordinary Portland Cement(OPC) would conventionally be used in the fields of civil engineering and architecture, however, OPC has the potential to generate a highly alkaline plume (pH$$>$$12.5), which will likely degrade the performance of other barriers in the repository such as the bentonite buffer and/or host rock. Low alkaline cementitious materials are therefore being developed that will mitigate the generation of a highly alkaline plume. JAEA has developed a High-volume Fly ash Silica fume Cement (HFSC) as a candidate low alkaline cementitious material. The workability of the HFSC shotcrete was confirmed by conducting In-situ full scale construction tests in the Horonobe underground research laboratory. This report summarizes the results of immersion tests to assess the long-term pH behavior of hardened HFSC cement pastes made with mix designs that are expected to be able to be used in the construction of an underground repository in Japan.

Journal Articles

Development of a design support system for geological disposal using a CIM concept

Sugita, Yutaka; Kawaguchi, Tatsuya; Hatanaka, Koichiro; Shimbo, Hiroshi*; Yamamura, Masato*; Kobayashi, Yuichi*; Fujisawa, Yasuo*; Kobayashi, Ichiro*; Yabuki, Nobuyoshi*

Proceedings of 16th International Conference on Computing in Civil and Building Engineering (ICCCBE 2016) (Internet), p.1173 - 1182, 2016/07

This paper presents status of development of the iSRE (integrated system for repository engineering) as a design supporting system that enables rational designing of a geological disposal repository. The complimentary technique of construction information modeling/management (CIM) has been employed for the development of iSRE. CIM uses a shared three dimensional (3D) model of associated data through common data models. The contents of this paper are the goal of the development, design requirements and required functions, the basic structure of iSRE. The main databases of the iSRE could then be designed with an interface to coordinate with external systems and other databases. Some of the databases and the interfaces were trialed and a data model was then built. A scenario of iSRE operation was also created and the applicability of iSRE using a data model was also examined. Thanks to the use of the existing software, the development process could be conducted while solving problems for realistic test cases. The prospect of the development of the iSRE for geological disposal projects was realized and the iSRE was confirmed as being a useful tool for designing a repository.

JAEA Reports

The In-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory; Examination of backfill material using muck from URL construction

Nakayama, Masashi; Ono, Hirokazu; Tanai, Kenji; Sugita, Yutaka; Fujita, Tomoo

JAEA-Research 2016-002, 280 Pages, 2016/06

JAEA-Research-2016-002.pdf:16.21MB

The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, "Geoscientific Research" and "Research and Development on Geological Disposal Technologies", and proceeds in three overlapping phases, "Phase I: Surface-based investigations", "Phase II: Investigations during tunnel excavation" and "Phase III: Investigations in the underground facilities", over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery (Niche No.4), and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal-Hydrological-Mechanical-Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. In EBS experiment, the backfill material using mixture of bentonite and muck from Horonobe URL construction was used for backfilling a part of Niche No.4. This report shows the results of properties of the backfill material, confirmation test of compaction method and making backfill material block, and so on. From these results, it was confirmed that the backfill material would satisfy target value of the permeability and the swelling pressure.

Journal Articles

Mechanical properties of siliceous mudstone of the Wakkanai formation

Hashiba, Kimihiro*; Fukui, Katsunori*; Sugita, Yutaka; Sanada, Masanori*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 21(2), p.75 - 82, 2014/12

Diatomaceous earth and siliceous rock are widespread in the areas along the Sea of Japan in Hokkaido Prefecture, Akita Prefecture, Noto Peninsula and Oki Islands. To construct underground structures in the siliceous rock mass, it is essential to understand its mechanical properties. In this study, siliceous mudstone of the Wakkanai formation obtained from the deep underground in Horonobe, Hokkaido was applied to various laboratory tests; uniaxial compression test, Brazilian tension test, drying shrinkage test and the test to investigate the time dependent behavior and strength recovery. The testing results showed that water has a huge effect on the deformation and failure of the siliceous mudstone; when the specimen is air dried in room temperature, the axial shrinkage strain reashes 0.9% and the strength is twice larger than that in wet condition. It was found that the siliceous mudstone exhibits the same degree of time dependent behavior and strength recovery as other rocks such as tuff and sandstone.

JAEA Reports

Research on engineering technology in the full-scale demonstration of EBS and operation technology for HLW disposal; Research report in 2011 (Joint research)

Nakatsuka, Noboru; Sato, Haruo; Tanai, Kenji; Sugita, Yutaka; Nakayama, Masashi; Sawada, Sumiyuki*; Niinuma, Hiroaki*; Asano, Hidekazu*; Saito, Masahiko*; Yoshino, Osamu*; et al.

JAEA-Research 2013-027, 34 Pages, 2013/11

JAEA-Research-2013-027.pdf:5.84MB

Japan Atomic Energy Agency (JAEA) and Radioactive Waste Management Funding and Research Center (RWMC) concluded the letter of cooperation agreement on the research and development of radioactive waste disposal in April, 2005, and have been carrying out the collaboration work based on the agreement. JAEA have been carrying out the Horonobe Underground Research Laboratory (URL) Project which is intended for a sedimentary rock in the Horonobe town, Hokkaido, since 2001. In the project, geoscientific research and research and development on geological disposal technology are being promoted. Meanwhile, the government (the Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry) has been promoting construction of equipments for the full-scale demonstration of engineered barrier system and operation technology for high-level radioactive waste (HLW) disposal since 2008, to enhance public's understanding to the geological disposal of HLW, e.g. using underground facility. RWMC received an order of the project in fiscal year 2010 (2010/2011) continuing since fiscal year 2008 (2008/2009). Since topics in this project are included in the Horonobe URL Project, JAEA carried out this project as collaboration work continuing in fiscal year 2008. This report summarizes the results of engineering technology carried out in this collaboration work in fiscal year 2011. In fiscal year 2011, part of the equipments for emplacement of buffer material was produced and visualization test for water penetration in buffer material were carried out.

JAEA Reports

Research on engineering technology in the full-scale demonstration of EBS and operation technology for HLW disposal; Research report in 2010 (Joint research)

Nakatsuka, Noboru; Hatanaka, Koichiro; Sato, Haruo; Sugita, Yutaka; Nakayama, Masashi; Asano, Hidekazu*; Saito, Masahiko*; Suyama, Yasuhiro*; Hayashi, Hidero*; Honda, Yuko*; et al.

JAEA-Research 2013-026, 57 Pages, 2013/11

JAEA-Research-2013-026.pdf:7.48MB

JAEA and RWMC concluded the letter of cooperation agreement on the research and development of radioactive waste disposal in April, 2005, and have been carrying out the collaboration work described above based on the agreement. JAEA have been carrying out the Horonobe URL Project which is intended for a sedimentary rock in the Horonobe town, Hokkaido, since 2001. In the project, geoscientific research and research and development on geological disposal technology are being promoted. Meanwhile, the government (the Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry) has been promoting construction of equipments for the full-scale demonstration of engineered barrier system and operation technology for high-level radioactive waste (HLW) disposal since 2008, to enhance public's understanding to the geological disposal of HLW, using underground facility, etc. RWMC received an order of the project in fiscal year 2010 continuing since fiscal year 2008. Since topics in this project are included in the Horonobe URL Project, JAEA carried out this project as collaboration work continuing in FY 2008. This report summarizes the results of engineering technology carried out in this collaboration work in fiscal year 2010. In fiscal year 2010, part of the equipments for emplacement of buffer material was produced and a house for the equipments and apparatus was opened in the adjoining land of Public Information House of JAEA Horonobe.

Journal Articles

Initial stress measurement by hydraulic fracturing method in diatomaceous mudstone in the Horonobe Underground Research Laboratory

Kondo, Keiji; Tsusaka, Kimikazu; Inagaki, Daisuke; Sugita, Yutaka; Kato, Harumi*; Niunoya, Sumio*

Dai-13-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (CD-ROM), p.583 - 588, 2013/01

no abstracts in English

Journal Articles

Strength and impermeability recovery of siliceous mudstone from complete failure

Sugita, Yutaka; Sanada, Masanori; Fujita, Tomoo; Hashiba, Kimihiro*; Fukui, Katsunori*; Okubo, Seisuke*

Dai-13-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (CD-ROM), p.207 - 212, 2013/01

Radionuclide migration can be undesirably increased by weakening the mechanical properties of a rock mass in the excavated disturbed zone (EDZ) around the tunnels of a geolical disposal facility for high level radioactive waste. Laboratory testing of loading stress and loading time on failed siliceous mudstone specimens has identified the potential for the long-term recovery of the strength and impermeability of the rock mass in the EDZ.

Journal Articles

Mine-by experiment in a deep shaft in Neogene sedimentary rocks at Horonobe, Japan

Sanada, Hiroyuki; Nakamura, Takahiro*; Sugita, Yutaka

International Journal of Rock Mechanics and Mining Sciences, 56, p.127 - 135, 2012/12

 Times Cited Count:2 Percentile:64.48(Engineering, Geological)

A Mine-by Experiment was carried out to investigate the development of an EDZ in one of the deep vertical shafts excavated in Neogene sedimentary rocks at the Horonobe URL site. The objective of this experiment is to understand the deformation and failure behavior and the hydraulic properties of the EDZ developed during sinking of the deep shaft. Before and after shaft sinking, BTV, borehole expansion tests, permeability tests and seismic velocity logging were carried out to determine initial conditions and changes in the mechanical and hydraulic properties. During shaft sinking, instruments such as extensometers and stress sensors were installed in the rock mass and in the shaft lining for stress measurements around the shaft circumference and to determine rock mass response to excavation. The variation of both mechanical and hydraulic properties was largest within 1 m of the shaft wall and the variation in hydraulic conductivity was in the range of one order of magnitude.

Journal Articles

Gas control measures taken during deep shaft excavation

Nago, Makito*; Hagihara, Takeshi*; Minamide, Masashi*; Motoshima, Takayuki*; Jin, Kazumi; Kudo, Hajime; Sugita, Yutaka; Miura, Yoichi*

Dai-49-Kai Zenkoku Kensetsugyo Rodo Saigai Boshi Taikai Kenkyu Rombunshu (CD-ROM), p.77 - 80, 2012/10

This paper presents measures against gas emission during deep shaft excavation in the Horonobe Underground Research Laboratory Project (Horonobe URL Project). The gas control measures taken in the Horonobe URL Project include the following: (1) determination of the amount of methane contained in surrounding strata and groundwater, and gas concentration based on preliminary investigations, (2) determination of the specifications of fans, dust collectors, and ducts through ventilation network analysis (simulation), (3) reduction of methane gas emission through the use of waterproofing grout, (4) prohibition on the use of internal-combustion engine and the adoption of explosion-proof equipment, (5) development of methane gas control system, and (6) monitoring of methane gas emission. (3) to (6) described above are performed daily in the safety management activities and described in detail in this paper. The ventilation and eastern access shafts have currently reached a depth of 290 m and 250 m, respectively. The emission of methane gas has been observed to rise 0.3 % to 1.3 % in the fault zone, and it is controlled appropriately according to the gas control measures described above. As the measure to reduce the methane gas concentration, monitoring is confirmed to be effective.

186 (Records 1-20 displayed on this page)