Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 31

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

Journal Articles

RELAP5 modeling of the HTTR-GT/H$$_{2}$$ secondary system and turbomachinery

Humrickhouse, P. W.*; Sato, Hiroyuki; Imai, Yoshiyuki; Sumita, Junya; Yan, X.

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 9 Pages, 2018/10

This work describes the development of a RELAP5-3D model of the HTTR-GT/H$$_{2}$$ plant secondary system. The RELAP5-3D model presently includes detailed models of several of the heat exchangers in the secondary system as well as the turbomachinery, which includes two compressors and two gas turbines connected to a common shaft and motor. The predictions of the model agreed well to design parameters in both sole power generation and hydrogen co-generation modes in most instances. Both the turbomachinery and heat exchanger models rely on extensive customization via RELAP5-3D control variables, and these implementations are outlined in detail. Potential improvements to the RELAP5-3D turbine model are discussed.

Journal Articles

HTTR-GT/H$$_{2}$$ test plant; System performance evaluation for HTTR gas turbine cogeneration plant

Sato, Hiroyuki; Nomoto, Yasunobu*; Horii, Shoichi*; Sumita, Junya; Yan, X.

Nuclear Engineering and Design, 329, p.247 - 254, 2018/04

 Times Cited Count:12 Percentile:77.27(Nuclear Science & Technology)

This paper presents the system performance evaluation for HTTR gas turbine cogeneration test plant (HTTR-GT/H$$_{2}$$ plant) so as to confirm that the design meets the requirements with respect to the demonstration test objective. Start-up and shut down operation sequences as well as operability of load following operation were investigated. In addition, system dynamic and control analyses for the test plant in the events of loss of generator load and upset of H$$_{2}$$ plant were performed. The simulation results presented in the paper show that the test plant is suitable for the test bed to validate control schemes against postulated transients in the GTHTR300C. The results also lead us to the conclusion that HTTR-GT/H$$_{2}$$ plant can be used to test operational procedures unique to HTGR direct-cycle gas turbine cogeneration.

Journal Articles

Design of HTTR-GT/H$$_{2}$$ test plant

Yan, X.; Sato, Hiroyuki; Sumita, Junya; Nomoto, Yasunobu*; Horii, Shoichi*; Imai, Yoshiyuki; Kasahara, Seiji; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; et al.

Nuclear Engineering and Design, 329, p.223 - 233, 2018/04

 Times Cited Count:20 Percentile:90.27(Nuclear Science & Technology)

The pre-licensing design of an HTGR cogeneration test plant to be coupled to JAEA's existing test reactor HTTR is presented. The plant is designed to demonstrate the system of JAEA commercial plant design GTHTR300C. With construction planned to be completed around 2025, the test plant is expected to be the first-of-a-kind nuclear system operating on two of the advanced energy conversion systems attractive for the HTGR closed cycle helium gas turbine for power generation and thermochemical iodine-sulfur water-splitting process for hydrogen production.

Journal Articles

Cost performance design for high temperature helium heat transport piping of GTHTR300C and HTTR-GT/H $$_{2}$$ plants

Nomoto, Yasunobu; Horii, Shoichi; Sumita, Junya; Sato, Hiroyuki; Yan, X.

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 9 Pages, 2017/04

This paper presents the cost performance design of heat transport piping systems for GTHTR300C plant and HTTR-GT/H $$_{2}$$ plant. Two types of pipe structure are designed and compared in terms of cost performance. Relative to the coaxial double-pipe structure, the insulated single pipe structure is found to have the advantage in overall cost performance considering both the material quantity and the heat loss because it reduces the quantity of steel used for construction. Furthermore it is possible to reduce the heat loss and temperature reduction of hot helium gas by the attachment of the external insulation. The pressure tube made of type-316 stainless steel with high-temperature strength is possible to achieve the same temperature reduction by smaller diameter than that made of 2 1/4Cr-1Mo steel. It contributes to the reduction of the quantity of steel. Specifications of heat transport piping systems for both plants are determined according to these study results.

Journal Articles

HTTR-GT/H$$_{2}$$ test plant; System performance evaluation for HTTR gas turbine cogeneration plant

Sato, Hiroyuki; Nomoto, Yasunobu; Horii, Shoichi; Sumita, Junya; Yan, X.; Ohashi, Hirofumi

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.759 - 766, 2016/11

This paper presents the system performance evaluation for HTTR gas turbine cogeneration test plant (HTTR-GT/H$$_{2}$$ plant) so as to confirm that the design meets the requirements with respect to the demonstration test objective. Start-up and shut down operation sequences as well as operability of load following operation were investigated. In addition, system dynamic and control analyses for the test plant in the events of loss of generator load and upset of H$$_{2}$$ plant were performed. The simulation results presented in the paper show that the test plant is suitable for the test bed to validate control schemes against postulated transients in the commercial Gas Turbine High Temperature Reactor Cogeneration (GTHTR300C). The results also lead us to the conclusion that HTTR-GT/H$$_{2}$$ plant can be used to test operational procedure unique to HTGR direct-cycle gas turbine cogeneration.

Journal Articles

HTTR-GT/H$$_{2}$$ test plant; System design

Yan, X.; Sato, Hiroyuki; Sumita, Junya; Nomoto, Yasunobu; Horii, Shoichi; Imai, Yoshiyuki; Kasahara, Seiji; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; et al.

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.827 - 836, 2016/11

Pre-licensing basic design for a cogenerating HTGR test plant system is presented. The plant to be coupled to existing 30 MWt 950$$^{circ}$$C test reactor HTTR is intended as a system technology demonstrator for GTHTR300C plant design. More specifically the test plant of HTTR-GT/H$$_{2}$$ aims to (1)demonstrate the licensability of the GTHTR300C for electricity production by gas turbine and hydrogen cogeneration by thermochemical process and (2) confirm the operation control and safety of such cogeneration system. With construction and operation completion by 2025, the test plant is expected to be the first of a kind HTGR-powered cogeneration plant operating on the two advanced energy conversion systems of closed cycle helium gas turbine for power generation and thermochemical iodine-sulfur water-splitting process for hydrogen production.

Journal Articles

HTTR demonstration program for nuclear cogeneration of hydrogen and electricity

Sato, Hiroyuki; Yan, X.; Sumita, Junya; Terada, Atsuhiko; Tachibana, Yukio

Journal of Nuclear Engineering and Radiation Science, 2(3), p.031010_1 - 031010_6, 2016/07

This paper explains the outline of HTTR demonstration program with a plant concept of the heat application system directed at establishing an HTGR cogeneration system with 950$$^{circ}$$C reactor outlet temperature for production of power and hydrogen as recommended by the task force. Commercial deployment strategy including a development plan for the helium gas turbine is also presented.

Journal Articles

Automated control for electric-thermal load following operation in nuclear gas turbine cogeneration system

Sato, Hiroyuki; Yan, X.; Sumita, Junya; Terada, Atsuhiko; Nishihara, Tetsuo

Proceedings of International Gas Turbine Congress 2015 (IGTC 2015) (DVD-ROM), p.184 - 190, 2015/11

This paper presents the original control system design to provide for an extended range of electrical-thermal load-following in the GTHTR300. The turbine speed control is newly added to the basic plant control to take full advantage of the system characteristics of the HTGR and the closed-cycle gas turbine to accomplish the design goal of maintaining constant reactor power and high thermal efficiency during the load-following operation. Simulation result presented in the paper shows that the design goal can be effectively met. The paper also describes a demonstration program to validate the system operability by connecting an electricity and hydrogen cogeneration plant to the HTTR.

Journal Articles

HTTR demonstration program for nuclear cogeneration of hydrogen and electricity

Sato, Hiroyuki; Sumita, Junya; Terada, Atsuhiko; Ohashi, Hirofumi; Yan, X.; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 8 Pages, 2015/05

This paper explains the outline and schedule of HTTR demonstration program with a plant concept of the heat application system directed at establishing an HTGR cogeneration system with 950$$^{circ}$$C reactor outlet temperature for production of power and hydrogen as recommended by the task force.

JAEA Reports

Conceptual design of small-sized HTGR system, 4; Plant design and technical feasibility

Ohashi, Hirofumi; Sato, Hiroyuki; Yan, X.; Sumita, Junya; Nomoto, Yasunobu; Tazawa, Yujiro; Noguchi, Hiroki; Imai, Yoshiyuki; Tachibana, Yukio

JAEA-Technology 2013-016, 176 Pages, 2013/09

JAEA-Technology-2013-016.pdf:8.62MB

JAEA has started a conceptual design of a 50MWt small-sized high temperature gas cooled reactor for steam supply and electricity generation (HTR50S), which is a first-of-kind of the commercial plant or a demonstration plant of a small-sized HTGR system for steam supply to the industries and district heating and electricity generation by a steam turbine. The plant design of HTR50S for the steam supply and electricity generation was performed based on the plant specification and the requirements for each system taking into account for the increase of the reactor outlet coolant temperature from 750$$^{circ}$$C to 900$$^{circ}$$C and the installation of IHX. The technical feasibility of HTR50S was confirmed because the designed systems satisfies the design requirements. The conceptual plant layout was also determined. This paper provides the summary of the plan design and technical feasibility of HTR50S.

Journal Articles

A Small-sized HTGR system design for multiple heat applications for developing countries

Ohashi, Hirofumi; Sato, Hiroyuki; Goto, Minoru; Yan, X.; Sumita, Junya; Tazawa, Yujiro*; Nomoto, Yasunobu; Aihara, Jun; Inaba, Yoshitomo; Fukaya, Yuji; et al.

International Journal of Nuclear Energy, 2013, p.918567_1 - 918567_18, 2013/00

Japan Atomic Energy Agency (JAEA) has conducted a conceptual design of a 50 MWt small-sized high temperature gas cooled reactor (HTGR) for multiple heat applications, named HTR50S, with the reactor outlet coolant temperature of 750 $$^{circ}$$C and 900 $$^{circ}$$C. It is first-of-a-kind of the commercial plant or a demonstration plant of a small-sized HTGR system to deploy it in developing countries in the 2020s. The design concept of HTR50S is to satisfy the user requirements for multipurpose heat application, to upgrade its performance compared to that of HTTR without significant R&D utilizing the knowledge obtained by the HTTR design and operation, and to fulfill the high level of safety by utilizing the inherent features of HTGR and a passive decay heat removal system.

Journal Articles

New result in the production and decay of an isotope, $$^{278}$$113 of the 113th element

Morita, Kosuke*; Morimoto, Koji*; Kaji, Daiya*; Haba, Hiromitsu*; Ozeki, Kazutaka*; Kudo, Yuki*; Sumita, Takayuki*; Wakabayashi, Yasuo*; Yoneda, Akira*; Tanaka, Kengo*; et al.

Journal of the Physical Society of Japan, 81(10), p.103201_1 - 103201_4, 2012/10

 Times Cited Count:167 Percentile:97.27(Physics, Multidisciplinary)

An isotope of the 113th element, $$^{278}$$113, was produced in a nuclear reaction with a $$^{70}$$Zn beam on a $$^{209}$$Bi target. We observed six consecutive $$alpha$$ decays following the implantation of a heavy particle in nearly the same position in the semiconductor detector, in extremely low background condition. The fifth and sixth decays are fully consistent with the sequential decays of $$^{262}$$Db and $$^{258}$$Lr both in decay energies and decay times. This indicates that the present decay chain consisted of $$^{278}$$113, $$^{274}$$Rg (Z = 111), $$^{270}$$Mt (Z = 109), $$^{266}$$Bh (Z = 107), $$^{262}$$Db (Z = 105), and $$^{258}$$Lr (Z = 103) with firm connections. This result, together with previously reported results from 2004 and 2007, conclusively leads the unambiguous production and identification of the isotope $$^{278}$$113, of the 113th element.

Journal Articles

Production and decay properties of $$^{264}$$Hs and $$^{265}$$Hs

Sato, Nozomi; Haba, Hiromitsu*; Ichikawa, Takatoshi*; Kaji, Daiya*; Kudo, Yuki*; Morimoto, Koji*; Morita, Kosuke*; Ozeki, Kazutaka*; Sumita, Takayuki*; Yoneda, Akira*; et al.

Journal of the Physical Society of Japan, 80(9), p.094201_1 - 094201_7, 2011/09

 Times Cited Count:15 Percentile:65.33(Physics, Multidisciplinary)

Decay properties of $$^{264}$$Hs and $$^{265}$$Hs produced in the $$^{207,208}$$Pb($$^{58}$$Fe, $$xn$$) [$$x$$=1, 2] reactions were studied using a gas-filled recoil ion separator at the linear accelerator facility of RIKEN. A total of 6 decay chains were assigned to $$^{264}$$Hs. Cross sections for the $$^{264}$$Hs production in the $$^{208}$$Pb($$^{58}$$Fe,$$2n$$) and $$^{207}$$Pb($$^{58}$$Fe,$$n$$) reactions were measured to be $$2.8^{+6.5}_{-2.3}$$pb and $$6.9^{+4.4}_{-3.1}$$pb, respectively. The isotope $$^{264}$$Hs decayed with a half-life of $$0.751^{+0.518}_{-0.218}$$ms by $$alpha$$-particle emission and spontaneous fission. The $$alpha$$-particle energy of $$^{264}$$Hs was observed at 10.61$$pm$$0.04 and 10.80$$pm$$0.08 MeV. The spontaneous fission branch of $$^{264}$$Hs was found to be $$17^{+38}_{-14}%$$.

JAEA Reports

Test plan using the HTTR for commercialization of GTHTR300C

Tachibana, Yukio; Nishihara, Tetsuo; Sakaba, Nariaki; Ohashi, Hirofumi; Sato, Hiroyuki; Ueta, Shohei; Aihara, Jun; Goto, Minoru; Sumita, Junya; Shibata, Taiju; et al.

JAEA-Technology 2009-063, 155 Pages, 2010/02

JAEA-Technology-2009-063.pdf:17.27MB

This report describes full scope of the feasible future test plan mainly using the HTTR. The test items cover fuel performance and radionuclide transport, core physics, reactor thermal hydraulics and plant dynamics, and reactor operations, maintenance, control, etc. The test results will be utilized for realization of Japan's commercial Very High Temperature Reactor (VHTR) system, GTHTR300C.

Journal Articles

Decay properties of $$^{266}$$Bh and $$^{262}$$Db produced in the $$^{248}$$Cm + $$^{23}$$Na reaction

Morita, Kosuke*; Morimoto, Koji*; Kaji, Daiya*; Haba, Hiromitsu*; Ozeki, Kazutaka*; Kudo, Yuki*; Sato, Nozomi*; Sumita, Takayuki*; Yoneda, Akira*; Ichikawa, Takatoshi*; et al.

Journal of the Physical Society of Japan, 78(6), p.064201_1 - 064201_6, 2009/06

 Times Cited Count:30 Percentile:78.34(Physics, Multidisciplinary)

Decay properties of an isotope $$^{266}$$Bh and its daughter nucleus $$^{262}$$Db produced by the $$^{248}$$Cm($$^{23}$$Na,5$$n$$) reaction were studied by using a gas-filled recoil separator coupled with a position-sensitive semiconductor detector. $$^{266}$$Bh was clearly identified from the correlation of the known nuclide, $$^{262}$$Db. The obtained decay properties of $$^{266}$$Bh and $$^{262}$$Db are consistent with those observed in the $$^{278}$$113 chain, which provided further confirmation of the discovery of $$^{278}$$113.

Journal Articles

Production of a new hassium isotope $$^{263}$$Hs

Kaji, Daiya*; Morimoto, Koji*; Sato, Nozomi*; Ichikawa, Takatoshi*; Ideguchi, Eiji*; Ozeki, Kazutaka*; Haba, Hiromitsu*; Koura, Hiroyuki; Kudo, Yuki*; Ozawa, Akira*; et al.

Journal of the Physical Society of Japan, 78(3), p.035003_1 - 035003_2, 2009/03

A new hassium isotopes $$^{263}$$Hs is directly produced for the first time. The experiment was performed at the linear accelerator (RILAC) facility in RIKEN (the Institute of Physical and Chemical Research) from Jun. 19 to 25. In the 25-h irradiation of $$^{58}$$Fe on $$^{206}$$Pb and 46-h irradiation of $$^{56}$$Fe on $$^{208}$$Pb, 8 decay chains and 1 decay chain, respectively, were observed. All decay chains were assigned to subsequent decays from $$^{263}$$Hs. The half-life of $$^{263}$$Hs is 0.60$$^{+0.30}_{-0.15}$$ ms. In this experiment, the total beam dose was $$4.1times10^{17}$$ ions for $$^{58}$$Fe and $$6.2times10^{17}$$ ions for $$^{56}$$Fe. The production cross section corresponding to 8 decay events and 1 decay chain was deduced to be 21$$^{+10}_{-8}$$ pb and 1.6$$^{+3.7}_{-1.3}$$ pb by assuming that the transmission of the system is 80%.

Journal Articles

Production and decay properties of $$^{263}$$Hs

Kaji, Daiya*; Morimoto, Koji*; Sato, Nozomi*; Ichikawa, Takatoshi*; Ideguchi, Eiji*; Ozeki, Kazutaka*; Haba, Hiromitsu*; Koura, Hiroyuki; Kudo, Yuki*; Ozawa, Akira*; et al.

Journal of the Physical Society of Japan, 78(3), p.035003_1 - 035003_2, 2009/03

 Times Cited Count:3 Percentile:26.3(Physics, Multidisciplinary)

A new neutron deficient hassium ($$Z$$=108) isotope of $$^{263}$$Hs was identified via two different reactions of $$^{206}$$Pb($$^{58}$$Fe,n) and $$^{208}$$Pb($$^{56}$$Fe,n) by using a gas-filled recoil separator GARIS at June 2008. During the 25-h irradiation of $$^{206}$$Pb with the $$^{58}$$Fe beam and 46-h irradiation of $$^{208}$$Pb with the $$^{56}$$Fe beam, 8 decay chains and 1 decay chain, respectively, have been observed. The half-life of $$^{263}$$Hs is 0.60$$^{+0.30}_{0.15}$$ ms. In this experiment, the total beam doses of the Fe and $$^{56}$$Fe was 4.1$$times$$10$$^{17}$$ ions and 6.2$$times$$10$$^{17}$$ ions, respectively. The production cross sections corresponding to the 8 decay chains and 1 decay chain have been deduced to be 21$$^{+10}_{-8}$$ pb and 1.6$$^{+3.7}_{-1.3}$$ pb by assuming the transmission of the system to be 80%.

Journal Articles

New decay properties of $$^{264}$$Hs, $$^{260}$$Sg, and $$^{256}$$Rf

Sato, Nozomi*; Haba, Hiromitsu*; Ichikawa, Takatoshi*; Ideguchi, Eiji*; Kaji, Daiya*; Koura, Hiroyuki; Kudo, Yuki*; Morimoto, Koji*; Morita, Kosuke*; Ozawa, Akira*; et al.

RIKEN Accelerator Progress Report, Vol.42, P. 16, 2009/00

New Decay Properties of $$^{264}$$Hs and its $$alpha$$-decay daughter nuclei were studied by using reactions of $$^{208}$$Pb($$^{58}$$Fe,2n) and $$^{207}$$Pb($$^{58}$$Fe,n) by using a gas-filled recoil ion separator, GARIS at RIKEN. We observed three correlated events in irradiation of $$^{58}$$Fe on $$^{208}$$Pb, and eight events in irradiation of $$^{58}$$Fe on $$^{207}$$Pb. A half-life was deduced to be 0.90$$^{+0.40}_{-0.20}$$. We assigned these eleven events to be the decays of $$^{264}$$Hs. We found different decay-chain events of $$^{264}$$Hs from a previous report. One is a long-lived $$alpha$$-decay of $$^{260}$$Sg with 180$$^{150}_{-60}$$ms of half-life. Another is a long-lived $$alpha$$-decay of $$^{256}$$Rf with 10.4$$^{8.4}_{-3.2}$$s of half-life. For $$^{260}$$Sg and $$^{256}$$Rf, the decay of such a long-lived state have not been reported. These are the first observations of isomerism in $$^{260}$$Sg and $$^{256}$$Rf.

Journal Articles

A Modular metal-fuel fast reactor with one-loop main cooling system

Chikazawa, Yoshitaka; Okano, Yasushi; Konomura, Mamoru; Sato, Koji; Sawa, Naoki*; Sumita, Hiroyuki*; Nakanishi, Shigeyuki*; Ando, Masato*

Nuclear Technology, 159(3), p.267 - 278, 2007/09

 Times Cited Count:1 Percentile:11.32(Nuclear Science & Technology)

A diversified or modular power source is attractive since it requires a low construction cost per unit and can be demonstrated in small scale experimental facilities. In this study, a new metal fuel sodium cooled reactor with 300MW electric has been developed enhancing cost reduction. And economical potential at demonstration stage with first of a kind (FOAK) is emphasized. A minimum configuration with a compact reactor vessel, a one-loop main cooling system and a simple fuel handling system is adopted enhancing cost reduction. For safety evaluation, reliability of the one-loop main cooling system has been shown by pipe-break transient analyses. Besides, construction cost of a demonstration plant with a first reactor and a small reprocessing and fuel fabrication facility is also evaluated. A major feature of the present concept is that the demonstration reactor and facilities can be directly appropriated for first commercial modules and the power plant can easily increase its capacity adding reactor and electrorefiner modules. A fast reactor cycle commercialization scenario using the present concept is thought to give low R&D or investment risk and high cost performance since the total demonstration plant cost is relatively small and the facilities are directly appropriated to commercial use.

31 (Records 1-20 displayed on this page)