Refine your search:     
Report No.
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Improvement construction for ground around High Active liquid Waste facility in Tokai Reprocessing Plant

Omori, Kazuki; Yamauchi, Sho; Yanagibashi, Futoshi; Sasaki, Shunichi; Wada, Takuya; Suzuki, Hisanori; Domura, Kazuyuki; Takeuchi, Kenji

Nihon Hozen Gakkai Dai-18-Kai Gakujutsu Koenkai Yoshishu, p.245 - 248, 2022/07

Tokai Reprocessing Plant (TRP), which is shifted to decommissioning stage, stores large amount of high-level radioactive liquid waste (HLLW). Although TRP is implementing vitrification of HLLW to reduce the risks related to HLLW storage, additional 20 years are required to complete vitrification of HLLW. Therefore, TRP is implementing safety countermeasure related to seismic resistance of HLLW storage facility as one of the top priorities. The results of the seismic evaluation indicate that although the facility itself is seismically resistant, there is a risk of insufficient binding force acting between the facility and the surrounding ground. Thus, replacement of the surrounding ground with concrete is performed. Since the countermeasures, to protect existing buries structure and coordinate with the other construction projects around the site, are required, the dedicated team was setup to handle the process and safety management of the concrete replacement construction.

JAEA Reports

Report on analytical activities in potentially hazardous materials mitigation measures at the Plutonium Conversion Development Facility; 2014.4 $$sim$$ 2015.12

Horigome, Kazushi; Suzuki, Hisanori; Suzuki, Yoshimasa; Ishibashi, Atsushi; Taguchi, Shigeo; Inada, Satoshi; Kuno, Takehiko; Surugaya, Naoki

JAEA-Technology 2016-026, 21 Pages, 2016/12


In order to mitigate potential hazards of storage plutonium in solution such as hydrogen generation, conversion of plutonium solution into MOX powder has been carried out since 2014 in the Plutonium Conversion Development Facility. With respect to the samples taken from the conversion process, about 3500 items of plutonium/uranium solutions and MOX powders have been analyzed for the operation control in the related analytical laboratories at the Tokai Reprocessing Plant. This paper describes the reports on analytical activities and related maintenance works in the analytical laboratories conducted from April 2014 to December 2015.

Journal Articles

Improvement of INVS measurement uncertainty for Pu nitrate solution

Makino, Risa; Swinhoe, M. T.*; Suzuki, Hisanori; Ikeda, Atsushi*; Menlove, H. O.*; Shimizu, Yasuyuki; Nakamura, Hironobu

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-35-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2015/01

The Inventory Verification Sample system (INVS) is a non-destructive assay system for samples to quantify the Pu amount in Pu nitrate solutions and MOX with 31.3% of counting efficiency. It has been used for IAEA verification measurement for many years at the Plutonium Conversion Development Facility for the samples taken at the timing of PIV etc. as a partial defects verification system (uncertainty: about 3-5%). If the measurement uncertainty can be improved (to $$sim$$1%), it is expected that the usage can be extended to the operator's own measurements in MC&A to reduce the number of destructive analyses. In order to improve the measurement uncertainty for solution samples, after optimization of detector parameter and sample position, we conducted 3 different types of calibration method that is passive calibration curve, known-$$alpha$$ and multiplicity method to achieve the target uncertainty. To perform calibration and control the measurement quality, MOX fuel pellets with known Pu amount are fabricated and used. In the range of concentration of typical solution samples, we could confirm good correlations between measured doubles and $$^{240}$$Pu effective mass in the three methods. Especially, it was confirmed that the conventional calibration curve method could meet our target uncertainty ($$sim$$1%).

Journal Articles

Maintenance experiences at analytical laboratory at the Tokai Reprocessing Plant

Suzuki, Hisanori; Nagayama, Tetsuya; Horigome, Kazushi; Ishibashi, Atsushi; Kitao, Takahiko; Surugaya, Naoki

Nihon Hozen Gakkai Dai-11-Kai Gakujutsu Koenkai Yoshishu, p.214 - 219, 2014/07

The Tokai Reprocessing Plant (TRP) is developing the technology to recover uranium and plutonium from spent nuclear fuel. There is an analytical laboratory which was built in 1978, as one of the most important facilities for process and material control analyses at the TRP. Samples taken from each process are analyzed by various analytical methods using hot cells, glove boxes and hume-hoods. A large number of maintenance work have been so far done and different types of experience have been accumulated. This paper describes our achievements in the maintenance activities at the analytical laboratory at the TRP.

Oral presentation

Reinforcement work to improve Earthquake resistance of main stack in Tokai Reprocessing Plant

Takeuchi, Kenji; Domura, Kazuyuki; Suzuki, Hisanori; Sasaki, Shunichi; Komori, Tsuyoshi; Uno, Shota

no journal, , 

no abstracts in English

5 (Records 1-5 displayed on this page)
  • 1