Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 227

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Unique high natural background radiation area; Dose assessment and perspectives

Hosoda, Masahiro*; Nugraha, E. D.*; Akata, Naofumi*; Yamada, Ryohei; Tamakuma, Yuki*; Sasaki, Michiya*; Kelleher, K.*; Yoshinaga, Shinji*; Suzuki, Takahito*; Rattanapongs, C. P.*; et al.

Science of the Total Environment, 750, p.142346_1 - 142346_11, 2021/01

The biological effects of low dose-rate radiation exposures on humans remains unknown. In fact, the Japanese nation still struggles with this issue after the Fukushima Dai-ichi Nuclear Power Plant accident. Recently, we have found a unique area in Indonesia where naturally high radiation levels are present, resulting in chronic low dose-rate radiation exposures. We aimed to estimate the comprehensive dose due to internal and external exposures at the particularly high natural radiation area, and to discuss the enhancement mechanism of radon. A car-borne survey was conducted to estimate the external doses from terrestrial radiation. Indoor radon measurements were made in 47 dwellings over three to five months, covering the two typical seasons, to estimate the internal doses. Atmospheric radon gases were simultaneously collected at several heights to evaluate the vertical distribution. The absorbed dose rates in air in the study area vary widely between 50 nGy h$$^{-1}$$ and 1109 nGy h$$^{-1}$$. Indoor radon concentrations ranged from 124 Bq m$$^{-3}$$ to 1015 Bq m$$^{-3}$$. That is, the indoor radon concentrations measured exceed the reference levels of 100 Bq m$$^{-3}$$ recommended by the World Health Organization. Furthermore, the outdoor radon concentrations measured were comparable to the high indoor radon concentrations. The annual effective dose due to external and internal exposures in the study area was estimated to be 27 mSv using the median values. It was found that many residents are receiving radiation exposure from natural radionuclides over the dose limit for occupational exposure to radiation workers. This enhanced outdoor radon concentration might be as a result of the stable atmospheric conditions generated at an exceptionally low altitude. Our findings suggest that this area provides a unique opportunity to conduct an epidemiological study related to health effects due to chronic low dose-rate radiation exposure.

Journal Articles

Development and application of a $$^3$$He neutron spin filter at J-PARC

Okudaira, Takuya; Oku, Takayuki; Ino, Takashi*; Hayashida, Hirotoshi*; Kira, Hiroshi*; Sakai, Kenji; Hiroi, Kosuke; Takahashi, Shingo*; Aizawa, Kazuya; Endo, Hitoshi*; et al.

Nuclear Instruments and Methods in Physics Research A, 977, p.164301_1 - 164301_8, 2020/10

Journal Articles

Evaluation of the characteristics of metal nitrate aqueous solutions by microwave heating and the morphologies of synthesized metal oxide powders

Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Suzuki, Masahiro; Fukasawa, Tomonori*; Fukui, Kunihiro*

Funtai Kogakkai-Shi, 57(9), p.485 - 494, 2020/09

In the spent fuel reprocessing process, a mixed solution of uranyl nitrate and plutonium nitrate is converted into mixed oxide powder by the microwave heating. To evaluate the applicability to the industrial-scale and acquire the characteristics data of the microwave heating denitration of various metal nitrate aqueous solutions based on the knowledge studied in the development of laboratory-scale basic experiments, the microwave heating characteristics and metal oxide powder properties were investigated using cerium nitrate, cobalt nitrate and copper nitrate aqueous solutions. The progress rate of the denitration reaction was depended on the position, and the denitration reaction proceeded faster at the periphery than at the center. The morphologies of the synthesized products were porous and hard dry solid with cerium nitrate aqueous solution, foamed dry solid with cobalt nitrate aqueous solution, and powdery particles with copper nitrate aqueous solution. The denitration ratio and average particle size of the synthesized products increased in the order of the cerium nitrate aqueous solution, the cobalt nitrate aqueous solution, and the copper nitrate aqueous solution. The numerical simulations revealed that the periphery of the bottom surface of the metal nitrate aqueous solution was heated by microwaves. This results consistent with the experimental results in which the denitration reaction started from the periphery of the metal nitrate aqueous solution.

Journal Articles

Cesium concentrations in various environmental media at Namie, Fukushima

Heged$"u$s, M.*; Shiroma, Yoshitaka*; Iwaoka, Kazuki*; Hosoda, Masahiro*; Suzuki, Takahito*; Tamakuma, Yuki*; Yamada, Ryohei; Tsujiguchi, Takakiyo*; Yamaguchi, Masaru*; Ogura, Koya*; et al.

Journal of Radioanalytical and Nuclear Chemistry, 323(1), p.197 - 204, 2020/01

 Times Cited Count:0 Percentile:100(Chemistry, Analytical)

The radioactivity of cesium in the water and sediments of two major rivers was measured along with airborne radioactivity in Namie Town, after the recent partial lift on the evacuation order in 2017. The observed concentrations were up to 384 $$pm$$ 11 mBq/L for $$^{137}$$Cs in unfiltered water and 1.28 $$pm$$ 0.09 mBq/m$$^{3}$$ for $$^{137}$$Cs in air, while the sediment had a maximum of 44900 $$pm$$ 23.4 Bq/kg for $$^{137}$$Cs. The $$^{134}$$Cs/$$^{137}$$Cs ratios indicate the main origin of the cesium in the sediment to be Unit 1 in good agreement with previous reports on the accident.

Journal Articles

Comparative study on performance of various environmental radiation monitors

Tamakuma, Yuki*; Yamada, Ryohei; Suzuki, Takahito*; Kuroki, Tomohiro*; Saga, Rikiya*; Mizuno, Hiroyuki*; Sasaki, Hiroyuki*; Iwaoka, Kazuki*; Hosoda, Masahiro*; Tokonami, Shinji*

Radiation Protection Dosimetry, 184(3-4), p.307 - 310, 2019/10

 Times Cited Count:0 Percentile:100(Environmental Sciences)

After the Fukushima Daiichi Nuclear Power Plant accident, the radiation dose for first responders was not evaluated accurately due to lack of the monitoring data. It has been important to evaluate a radiation dose for workers in emergency response at a nuclear accident. In this study, a new device which can evaluate both of external and internal exposure doses was developed and the performance of various environmental radiation monitors including commercially available monitors were tested and compared from the viewpoint of an environmental monitoring at emergency situation. Background counts of the monitors and the ambient dose equivalent rate were measured in Fukushima Prefecture. The detection limit for beta particles was evaluated by the method of ISO11929. The sensitivity for gamma-rays of the dust monitor using a ZnS(Ag) and a plastic scintillator was high, but that of the external exposure monitor using a silicon photodiode with CsI(Tl) crystal was relatively low. The detection limit ranged 190-280 Bq m$$^{-3}$$ at 100 $$mu$$Sv h$$^{-1}$$, exceeding the detection limit of 100 Bq m$$^{-3}$$ in the minimum requirement by the National Regulation Authority in Japan. Use of the shielding with lead is necessary to achieve the minimum requirement. These results indicate that the dust monitor using a ZnS(Ag) scintillator and a plastic scintillator is suitable for the external exposure monitor and the developed internal exposure monitor is for the internal exposure monitor at emergency situation among the evaluated monitors. In the future study, the counting efficiency, the relative uncertainty and the performance of the detection for alpha particles will be evaluated, and it will be considered which type of a monitor is suitable after taking the portability into account.

Journal Articles

Enhancement of element production by incomplete fusion reaction with weakly bound deuteron

Wang, H.*; Otsu, Hideaki*; Chiga, Nobuyuki*; Kawase, Shoichiro*; Takeuchi, Satoshi*; Sumikama, Toshiyuki*; Koyama, Shumpei*; Sakurai, Hiroyoshi*; Watanabe, Yukinobu*; Nakayama, Shinsuke; et al.

Communications Physics (Internet), 2(1), p.78_1 - 78_6, 2019/07

 Times Cited Count:4 Percentile:28.2(Physics, Multidisciplinary)

Searching for effective pathways for the production of proton- and neutron-rich isotopes through an optimal combination of reaction mechanism and energy is one of the main driving forces behind experimental and theoretical nuclear reaction studies as well as for practical applications in nuclear transmutation of radioactive waste. We report on a study on incomplete fusion induced by deuteron, which contains one proton and one neutron with a weak binding energy and is easily broken up. This reaction study was achieved by measuring directly the cross sections for both proton and deuteron for $$^{107}$$Pd at 50 MeV/u via inverse kinematics technique. The results provide direct experimental evidence for the onset of a cross-section enhancement at high energy, indicating the potential of incomplete fusion induced by loosely-bound nuclei for creating proton-rich isotopes and nuclear transmutation of radioactive waste.

Journal Articles

Study on optimizing microwave heating denitration method and powder characteristics of uranium trioxide

Segawa, Tomoomi; Kawaguchi, Koichi; Kato, Yoshiyuki; Ishii, Katsunori; Suzuki, Masahiro; Fujita, Shunya*; Kobayashi, Shohei*; Abe, Yutaka*; Kaneko, Akiko*; Yuasa, Tomohisa*

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 9 Pages, 2019/05

A solution of plutonium nitrate and uranyl nitrate is converted into a mixed oxide by microwave heating denitration method. In the present study, for improving the efficiency of microwave heating and achieving high-temperature uniformity to produce homogeneous UO$$_{3}$$ powder, the microwave heating test of potassium chloride and uranyl nitrate solution, and numerical simulation analysis were conducted. The potassium chloride agar was adjusted to the dielectric loss, which is close to that of the uranyl nitrate solution and the optimum support table height was estimated to be 50 mm for denitration of the uranyl nitrate solution by microwave heating. The adiabator improved the efficiency of microwave heating denitration. Moreover, the powder yield was improved by using the adiabator owing to ease of scraping of the denitration product from the bottom of the denitration vessel.

Journal Articles

Development of granulation system for simplified MOX pellet fabrication process

Ishii, Katsunori; Segawa, Tomoomi; Kawaguchi, Koichi; Suzuki, Masahiro

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 5 Pages, 2019/05

Japan Atomic Energy Agency (JAEA) is developing a simplified pelletizing process for MOX fuel fabrication. In this process, the flowability of MOX powder produced by de-nitration conversion based on microwave heating, calcination, and reduction is improved using the wet granulation method. In a previous paper, to produce MOX granules of appropriate sizes for pelletizing them effectively, we proposed a granulation system composed of a wet granulator and a sizing machine. In the present work, we modernized the wet granulator, completed the granulation system by adding auxiliary equipment, and conducted performance tests of the granulation system with WO$$_{3}$$ powder. The results of a performance test indicated that it is possible to convert raw powder into granules characterized by appropriate size and excellent flowability. The time required to process 5 kg of WO$$_{3}$$ powder was about 70 min, which almost satisfies the target time.

Journal Articles

Absorbent property of fullerene for cesium isotope separation investigated using X-ray photoelectron spectroscopy

Sekiguchi, Tetsuhiro; Yokoyama, Keiichi; Uozumi, Yuki*; Yano, Masahiro; Asaoka, Hidehito; Suzuki, Shinichi; Yaita, Tsuyoshi

Progress in Nuclear Science and Technology (Internet), 5, p.161 - 164, 2018/11

For nuclear transmutation of cesium-135 ($$^{135}$$Cs), which is long-lived fission product, we are developing selective absorbent which takes only Cs atom in, but does not CsI. In this study, absorbing property of Cs atom onto the surface of fullerene (C$$_{60}$$) film has been investigated using synchrotron-based angle-dependent X-ray photoelectron spectroscopy (XPS). The results were compared with those of CsI. It was found that Cs penetrates into C$$_{60}$$ deep bulk. In contrast, CsI deposits on shallow surface. Furthermore, XPS spectra were measured as a function of Ar$$^{+}$$-sputtering time in order to know Cs concentration profiles in deep region. Results showed that Cs penetrates into deep region of several hundreds ${AA}$.

Journal Articles

Improvement of motor control system in J-PARC linac and RCS

Takahashi, Hiroki; Miura, Akihiko; Sawabe, Yuki; Yoshimoto, Masahiro; Suzuki, Takahiro*; Kawase, Masato*

Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.2180 - 2182, 2018/06

The stepping motor control system used in the profile monitor and RCS collimator of J-PARC is configured by VME-based. Most of these pieces of control equipment are in use for more than 10 years. Therefore, countermeasures against aging of equipment are necessary. In addition, it is necessary to implement countermeasures against malfunction of the control system, which is thought to be caused by radiation. In 2016, a malfunction occurred in the motor control system of the RCS collimator. Taking this as a starting point, we began developing a motor control system that can ensure equipment safety even if a malfunction occurs. In this paper, we show the inference of the cause of this malfunction and present details of the developed high-safety motor control system.

Journal Articles

Design of HTTR-GT/H$$_{2}$$ test plant

Yan, X. L.; Sato, Hiroyuki; Sumita, Junya; Nomoto, Yasunobu*; Horii, Shoichi*; Imai, Yoshiyuki; Kasahara, Seiji; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; et al.

Nuclear Engineering and Design, 329, p.223 - 233, 2018/04

 Times Cited Count:6 Percentile:13.66(Nuclear Science & Technology)

The pre-licensing design of an HTGR cogeneration test plant to be coupled to JAEA's existing test reactor HTTR is presented. The plant is designed to demonstrate the system of JAEA commercial plant design GTHTR300C. With construction planned to be completed around 2025, the test plant is expected to be the first-of-a-kind nuclear system operating on two of the advanced energy conversion systems attractive for the HTGR closed cycle helium gas turbine for power generation and thermochemical iodine-sulfur water-splitting process for hydrogen production.

Journal Articles

Recent statistical topics of nuclear material inventory verification

Kikuchi, Masahiro*; Suzuki, Mitsutoshi

Wiley StatsRef; Statistics Reference Online (Internet), 7 Pages, 2018/03

A near-real-time accountancy (NRTA) as a timely statistical test method for nuclear material inventory verification in international safeguards has a unique feature and development history, and it has been maintained and updated in large nuclear facilities in Japan. A recent discussion on approaches of measurement uncertainty may have impacted on the decision criteria of NRTA because its development origin dates back to the 1970's and derived from the conventional random and systematic error model. In this article, we will show the overview associated with this issue.

Journal Articles

Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex, 2; Neutron scattering instruments

Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.

Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12

The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

Journal Articles

HTTR-GT/H$$_{2}$$ test plant; System design

Yan, X.; Sato, Hiroyuki; Sumita, Junya; Nomoto, Yasunobu; Horii, Shoichi; Imai, Yoshiyuki; Kasahara, Seiji; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; et al.

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.827 - 836, 2016/11

Pre-licensing basic design for a cogenerating HTGR test plant system is presented. The plant to be coupled to existing 30 MWt 950$$^{circ}$$C test reactor HTTR is intended as a system technology demonstrator for GTHTR300C plant design. More specifically the test plant of HTTR-GT/H$$_{2}$$ aims to (1)demonstrate the licensability of the GTHTR300C for electricity production by gas turbine and hydrogen cogeneration by thermochemical process and (2) confirm the operation control and safety of such cogeneration system. With construction and operation completion by 2025, the test plant is expected to be the first of a kind HTGR-powered cogeneration plant operating on the two advanced energy conversion systems of closed cycle helium gas turbine for power generation and thermochemical iodine-sulfur water-splitting process for hydrogen production.

Journal Articles

Influence of the heating method on the particle characteristics of copper oxide powders synthesized from copper nitrate aqueous solutions

Segawa, Tomoomi; Fukasawa, Tomonori*; Huang, A.-N.*; Yamada, Yoshikazu; Suzuki, Masahiro; Fukui, Kunihiro*

Chemical Engineering Science, 153, p.108 - 116, 2016/10

 Times Cited Count:3 Percentile:78.64(Engineering, Chemical)

The influence of the heating method and rate on the morphology of CuO powders synthesized from Cu(NO$$_{3}$$)$$_{2}$$$$cdot$$3H$$_{2}$$O aqueous solutions by denitration was investigated. The median diameter of the obtained powder was found to decrease as the heating rate increased, independent of the heating method. The microwave heating method remarkably reduced the particle size and enhanced the irregularity and disorder of the shape and surface of the particles, which were found to be more widely distributed. In contrast, the microwave hybrid heating method yielded the most spherical particles with the smoothest surface. It was also found that this heating method sharpened the particle size distribution and had higher energy efficiency than the MW method. Numerical simulations also indicated a difference in the energy efficiency between these two methods. The simulations also revealed that the hybrid method could heat the whole reactor more uniformly with a lower microwave output.

Journal Articles

Influence of heating method on size and morphology of metallic oxide powder synthesized from metallic nitrate solution

Segawa, Tomoomi; Fukasawa, Tomonori*; Yamada, Yoshikazu; Suzuki, Masahiro; Yoshida, Hideto*; Fukui, Kunihiro*

Proceedings of Asian Pacific Confederation of Chemical Engineering 2015 (APCChE 2015), 8 Pages, 2015/09

A mixed solution of uranyl nitrate and plutonium nitrate is converted to MOX raw powder by the microwave heating de-nitration method in nuclear reprocessing. Copper oxide synthesized by heating de-nitration was used as a model for the de-nitration process. The microwave heating method (MW) and infrared heating method (IR) were used, and how they and their heating rate influence the obtained particle morphology and size were investigated. The particles obtained by the MW and IR were sufficiently similar in the surface morphology and the mass median diameter was decreased by the increased heating rate. The mass median diameters by the MW were the heating rate and smaller than those obtained by IR. The particle size distribution of the particle obtained by the MW was broader than that by the IR. The relationship of the temperature distribution and particle size distribution by the MW was discussed by the numerical simulation.

Journal Articles

Precise determination of $$^{12}_{Lambda}$$C level structure by $$gamma$$-ray spectroscopy

Hosomi, Kenji; Ma, Y.*; Ajimura, Shuhei*; Aoki, Kanae*; Dairaku, Seishi*; Fu, Y.*; Fujioka, Hiroyuki*; Futatsukawa, Kenta*; Imoto, Wataru*; Kakiguchi, Yutaka*; et al.

Progress of Theoretical and Experimental Physics (Internet), 2015(8), p.081D01_1 - 081D01_8, 2015/08

 Times Cited Count:12 Percentile:29.71(Physics, Multidisciplinary)

Level structure of the $$^{12}_{Lambda}$$C hypernucleus was precisely determined by means of $$gamma$$-ray spectroscopy. We identified four $$gamma$$-ray transitions via the $$^{12}$$C$$(pi^{+},K^{+}gamma)$$ reaction using a germanium detector array, Hyperball2. The spacing of the ground-state doublet $$(2^{-}, 1^{-}_{1})$$ was measured to be $$161.5pm0.3$$(stat)$$pm0.3$$ (syst)keV from the direct $$M1$$ transition. Excitation energies of the $$1^{-}_{2}$$ and $$1^{-}_{3}$$ states were measured to be $$2832pm3pm4$$, keV and $$6050pm8pm7$$, keV, respectively. The obtained level energies provide definitive references for the reaction spectroscopy of $$Lambda$$ hypernuclei.

Journal Articles

Nickel oxide powder synthesis from aqueous solution of nickel nitrate hexahydrate by a microwave denitration method

Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Suzuki, Masahiro; Arimitsu, Naoki*; Yoshida, Hideto*; Fukui, Kunihiro*

Advanced Powder Technology, 26(3), p.983 - 990, 2015/05

 Times Cited Count:6 Percentile:76.82(Engineering, Chemical)

Denitration of the aqueous solution of nickel nitrate hexahydrate (Ni(NO$$_{3}$$)$$_{2}$$$$cdot$$6H$$_{2}$$O) by a microwave heating method was investigated. Since Ni(NO$$_{3}$$)$$_{2}$$$$cdot$$6H$$_{2}$$O aqueous solution cannot be heated to over 300 $$^{circ}$$C by microwave irradiation owing to the low microwave absorptivity of its intermediate, NiO could not previously be obtained by microwave heating. We propose a novel NiO synthesis method that uses microwave heating without the risk of chemical contamination. A NiO powder reagent was added to the solution as a microwave acceptor. The denitration efficiency to NiO could be improved by an adiabator around the reactor to increase the temperature homogeneity in the reactor. Numerical simulations also reveal that the use of the adiabator results in remarkable changes in the electromagnetic field distribution in the reactor, temperature inhomogeneity decreases.

JAEA Reports

Enhancement of the methodology of repository design and post-closure performance assessment for preliminary investigation stage, 3; Progress report on NUMO-JAEA collaborative research in FY2013 (Joint research)

Shibata, Masahiro; Sawada, Atsushi; Tachi, Yukio; Makino, Hitoshi; Wakasugi, Keiichiro; Mitsui, Seiichiro; Kitamura, Akira; Yoshikawa, Hideki; Oda, Chie; Ishidera, Takamitsu; et al.

JAEA-Research 2014-030, 457 Pages, 2015/03


JAEA and NUMO have conducted a collaborative research work which is designed to enhance the methodology of repository design and post-closure performance assessment in preliminary investigation stage. With regard to (1) study on rock suitability in terms of hydrology, based on some examples of developing method of hydro-geological structure model, acquired knowledge are arranged using the tree diagram, and model uncertainty and its influence on the evaluation items were discussed. With regard to (2) study on scenario development, the developed approach for "defining conditions" has been reevaluated and improved from practical viewpoints. In addition, the uncertainty evaluation for the effect of use of cementitious material, as well as glass dissolution model, was conducted with analytical evaluation. With regard to (3) study on setting radionuclide migration parameters, based on survey of precedent procedures, multiple-approach for distribution coefficient of rocks was established, and the adequacy of the approach was confirmed though its application to sedimentary rock and granitic rock. Besides, an approach for solubility setting was developed including the procedure of selection of solubility limiting solid phase. The adequacy of the approach was confirmed though its application to key radionuclides.

Journal Articles

Development of RF input coupler for the IFMIF/EVEDA prototype RFQ linac

Maebara, Sunao; Antonio, P.*; Ichikawa, Masahiro; Takahashi, Hiroki; Suzuki, Hiromitsu; Sugimoto, Masayoshi

Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.561 - 563, 2014/06

no abstracts in English

227 (Records 1-20 displayed on this page)