Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sueoka, Shigeru; Kawakami, Tetsuo*; Suzuki, Kota*; Kagami, Saya; Yokoyama, Tatsunori; Shibazaki, Bunichiro*; Nagata, Mitsuhiro; Yamazaki, Ayu*; Higashino, Fumiko*; King, G. E.*; et al.
Fuisshon, Torakku Nyusureta, (36), p.1 - 3, 2023/12
no abstracts in English
Hayakawa, Sho*; Yamamoto, Yojiro*; Okita, Taira*; Itakura, Mitsuhiro; Suzuki, Katsuyuki*
Computational Materials Science, 218, p.111987_1 - 111987_10, 2023/02
Times Cited Count:1 Percentile:6.14(Materials Science, Multidisciplinary)Tsugawa, Kiyoto*; Hayakawa, Sho*; Okita, Taira*; Aichi, Masaatsu*; Itakura, Mitsuhiro; Suzuki, Katsuyuki*
Computational Materials Science, 215, p.111806_1 - 111806_8, 2022/12
Times Cited Count:5 Percentile:35.40(Materials Science, Multidisciplinary)Kondo, Yasuhiro; Kitamura, Ryo; Fuwa, Yasuhiro; Morishita, Takatoshi; Moriya, Katsuhiro; Takayanagi, Tomohiro; Otani, Masashi*; Cicek, E.*; Ego, Hiroyasu*; Fukao, Yoshinori*; et al.
Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.636 - 641, 2022/09
The muon linac project for the precise measurement of the muon anomalous magnetic and electric dipole moments, which is currently one of the hottest issues of the elementary particle physics, is in progress at J-PARC. The muons from the J-PARC muon facility are once cooled to room temperature, then accelerated up to 212 MeV with a normalized emittance of 1.5 mm mrad and a momentum spread of 0.1%. Four types of accelerating structures are adopted to obtain the efficient acceleration with a wide beta range from 0.01 to 0.94. The project is moving into the construction phase. We already demonstrated the re-acceleration scheme of the decelerated muons using a 324-MHz RFQ in 2017. The high-power test of the 324-MHz Interdigital H-mode (IH) DTL using a prototype cavity was performed in 2021. The fabrication of the first module of 14 modules of the 1296-MHz Disk and Washer (DAW) CCL will be done to confirm the production process. Moreover, the final design of the travelling wave accelerating structure for the high beta region is also proceeding. In this paper, the recent progress toward the realization of the world first muon linac will be presented.
Tsugawa, Kiyoto*; Hayakawa, Sho*; Iwase, Yuki*; Okita, Taira*; Suzuki, Katsuyuki*; Itakura, Mitsuhiro; Aichi, Masaatsu*
Computational Materials Science, 210, p.111450_1 - 111450_9, 2022/07
Times Cited Count:16 Percentile:75.72(Materials Science, Multidisciplinary)Mori, Sho*; Matsuda, Nayuta*; Okita, Taira*; Aichi, Masaatsu*; Itakura, Mitsuhiro; Suzuki, Katsuyuki*
Materialia, 21, p.101371_1 - 101371_6, 2022/03
Okita, Taira*; Terayama, Satoshi*; Tsugawa, Kiyoto*; Kobayashi, Keita; Okumura, Masahiko; Itakura, Mitsuhiro; Suzuki, Katsuyuki*
Computational Materials Science, 202, p.110865_1 - 110865_9, 2022/02
Times Cited Count:7 Percentile:34.77(Materials Science, Multidisciplinary)Terayama, Satoshi*; Iwase, Yuki*; Hayakawa, Sho*; Okita, Taira*; Itakura, Mitsuhiro; Suzuki, Katsuyuki*
Computational Materials Science, 195, p.110479_1 - 110479_12, 2021/07
Times Cited Count:9 Percentile:43.25(Materials Science, Multidisciplinary)Kuroda, Kenta*; Arai, Yosuke*; Rezaei, N.*; Kunisada, So*; Sakuragi, Shunsuke*; Alaei, M.*; Kinoshita, Yuto*; Bareille, C.*; Noguchi, Ryo*; Nakayama, Mitsuhiro*; et al.
Nature Communications (Internet), 11, p.2888_1 - 2888_9, 2020/06
Times Cited Count:34 Percentile:79.74(Multidisciplinary Sciences)Hayakawa, Sho*; Doihara, Kohei*; Okita, Taira*; Itakura, Mitsuhiro; Aichi, Masaatsu*; Suzuki, Katsuyuki*
Journal of Materials Science, 54(17), p.11509 - 11525, 2019/09
Times Cited Count:18 Percentile:53.56(Materials Science, Multidisciplinary)Hayakawa, Sho*; Okita, Taira*; Itakura, Mitsuhiro; Kawabata, Tomoya*; Suzuki, Katsuyuki*
Journal of Materials Science, 54(16), p.11096 - 11110, 2019/08
Times Cited Count:13 Percentile:44.33(Materials Science, Multidisciplinary)Nakanishi, Daiki*; Kawabata, Tomoya*; Doihara, Kohei*; Okita, Taira*; Itakura, Mitsuhiro; Suzuki, Katsuyuki*
Philosophical Magazine, 98(33), p.3034 - 3047, 2018/09
Times Cited Count:11 Percentile:42.12(Materials Science, Multidisciplinary)By using the six sets of interatomic potentials for face-centredcubic metals that differ in the stacking fault energy (SFE) while most of the other material parameters are kept almost identical, we conducted molecular dynamics simulations to evaluate the effects of SFE on the defect formation process through collision cascades. The ratio of glissile SIA clusters tends to decrease with increasing SFE. This is because perfect loops, the edges of which split into two partial dislocations with stacking fault structures between them in most cases, prefer to form at lower SFEs. The enhanced formation of glissile SIA clusters at lower SFEs can also be observed even at increased temperature.
Hayakawa, Sho*; Okita, Taira*; Itakura, Mitsuhiro; Aichi, Masaatsu*; Suzuki, Katsuyuki*
Philosophical Magazine, 98(25), p.2311 - 2325, 2018/06
Times Cited Count:8 Percentile:35.77(Materials Science, Multidisciplinary)We conduct kinetic Monte Carlo simulations for the conservative climb motion of a cluster of self-interstitial atoms towards another SIA cluster in BCC Fe; the conservative climb velocity is inversely proportional to the fourth power of the distance between them, as per the prediction based on Einstein's equation. The size of the climbing cluster significantly affects its conservative climb velocity, while the size of the cluster that originates the stress field does not. The activation energy for the conservative climb is considerably greater than that derived in previous studies and strongly dependent on the climbing cluster size.
Doihara, Kohei*; Okita, Taira*; Itakura, Mitsuhiro; Aichi, Masaatsu*; Suzuki, Katsuyuki*
Philosophical Magazine, 98(22), p.2061 - 2076, 2018/05
Times Cited Count:22 Percentile:68.58(Materials Science, Multidisciplinary)In this study, molecular dynamics simulations were performed to elucidate the effects of stacking fault energy (SFE) on the physical interactions between an edge dislocation and a spherical void in the crystal structure of face-centred cubic metals at various temperatures and for different void sizes. Four different types of interaction morphologies were observed, in which (1) two partial dislocations detached from the void separately, and the maximum stress corresponded to the detachment of the trailing partial; (2) two partial dislocations detached from the void separately, and the maximum stress corresponded to the detachment of the leading partial; (3) the partial dislocations detached from the void almost simultaneously without jog formation; and (4) the partial dislocations detached from the void almost simultaneously with jog formation. With an increase in void size or SFE, the interaction morphology changed in the above-mentioned order. It was observed that the magnitude of the critical resolved shear stress (CRSS) and its dependence on the SFE were determined by these interaction morphologies. The value of the CRSS in the case of interaction morphology (1) is almost equal to an analytical one based on the linear elasticity by employing the Burgers vector of a single partial dislocation. The maximum value of the CRSS is also obtained by the analytical model with the Burgers vector of the two partial dislocations.
Kuroda, Kenta*; Ochi, Masayuki*; Suzuki, Hiroyuki*; Hirayama, Motoaki*; Nakayama, Mitsuhiro*; Noguchi, Ryo*; Bareille, C.*; Akebi, Shuntaro*; Kunisada, So*; Muro, Takayuki*; et al.
Physical Review Letters, 120(8), p.086402_1 - 086402_6, 2018/02
Times Cited Count:57 Percentile:91.32(Physics, Multidisciplinary)Ito, Daisuke*; Rivera, M. N.*; Saito, Yasushi*; Aoyagi, Mitsuhiro; Kamiyama, Kenji; Suzuki, Toru*
Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) (USB Flash Drive), 10 Pages, 2017/09
Nava, M.*; Ito, Daisuke*; Saito, Yasushi*; Aoyagi, Mitsuhiro; Kamiyama, Kenji; Suzuki, Toru*
Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 5 Pages, 2017/07
Ito, Daisuke*; Nava, M.*; Saito, Yasushi*; Aoyagi, Mitsuhiro; Kamiyama, Kenji; Suzuki, Toru*
Proceedings of 2017 Japan-US Seminar on Two-Phase Flow Dynamics (JUS 2017), 4 Pages, 2017/06
Aoyagi, Mitsuhiro; Kamiyama, Kenji; Tobita, Yoshiharu; Suzuki, Toru
Proceedings of 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10) (USB Flash Drive), 14 Pages, 2014/12
A numerical model for freezing and blockage formation of solid-liquid flow in the SIMMER code was validated in order to improve the accuracy in evaluating fuel discharge behavior in the core disruptive accident of FBR. The THEFIS experiment which investigated fuel discharge behavior was chosen as reference data in this study. The numerical conditions were set according to the experimental system. Although the experimental result was well simulated by using the existing numerical model of SIMMER, the melt flow was suppressed excessively in some cases. Overestimation of flow resistance by the solid particles in the numerical model was discovered though the comparison between the numerical model and the physical phenomenon in the experiment. The numerical model caused the excessive melt flow suppression. Therefore, we improved the numerical model to adapt to the actual phenomenon. Then, it was confirmed the improved numerical model brought more appropriate numerical results.
Suzuki, Mitsuhiro; Nakamura, Hideo
Journal of Nuclear Science and Technology, 47(12), p.1193 - 1205, 2010/12
Times Cited Count:2 Percentile:16.64(Nuclear Science & Technology)Presented in the paper are experimental results on general performance of core exit thermocouple (CET) to detect core overheat for accident management (AM) action. Thirteen tests simulating small break loss-of-coolant accident (SBLOCA) and abnormal transient are studied by using the Large Scale Test Facility (LSTF) which is a full-height, full-pressure and 1/48 volumetric-scaled PWR model. Clarified are as follows, (1) general CET performance with certain delay in time and temperature rise from core overheating in most cases, (2) one common reason of the delay due to cooling effects of metal structures in core and core exit, (3) an indication of superheat instead of its temperature necessary for significantly high or low pressure transients, (4) no CET heat-up in case of large water fall-back from hot legs and in addition, discussion on applicability to PWR is presented.