Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 37

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

"Development of mutual separation technology of minor actinides by the novel hydrophilic and lipophilic diamide compounds" summary of the researches for three years (Contract research)

Sasaki, Yuji; Tsubata, Yasuhiro; Kitatsuji, Yoshihiro; Sugo, Yumi; Shirasu, Noriko; Ikeda, Yasuhisa*; Kawasaki, Takeshi*; Suzuki, Tomoya*; Mimura, Hitoshi*; Usuda, Shigekazu*; et al.

JAEA-Research 2014-008, 220 Pages, 2014/06

JAEA-Research-2014-008.pdf:41.81MB

The researches on Development of mutual separation technology of minor actinides by the novel hydrophilic and lipophilic diamide compounds, entrusted to Japan Atomic Energy Agency by the Ministry of Education, Culture, Sports, Science and Technology of Japan, from 2010 to 2012 are summarized. This project was composed of three themes, those are (1) Development of total recovery of MA+Ln: basic researches for new extractant, DOODA, (2) Development of mutual separation of Am/Cm/Ln: basic researches of Ln-complex, solvent extraction, and extraction chromatography, and (3) Evaluation of separation technique: process simulation. For topic (1), we summarized the information on characteristic of DOODA extractant. For topic (2), we summarized the information on structures of Ln-complexes, solvent extraction and chromatography. For topic (3), we summarized the information on conditions of mixer-settler and evaluation of each fraction separated.

Journal Articles

QA/QC activities and estimation of uncertainty for ultra-trace analysis of uranium and plutonium in safeguards environmental samples

Usuda, Shigekazu*; Magara, Masaaki; Esaka, Fumitaka; Yasuda, Kenichiro; Kokubu, Yoko; Lee, C. G.; Miyamoto, Yutaka; Suzuki, Daisuke; Inagawa, Jun; Sakurai, Satoshi; et al.

Journal of Nuclear and Radiochemical Sciences, 11(2), p.A5 - A9, 2011/01

In the analysis of IAEA safeguards environmental samples, isotope ratios of ultra-trace amounts of uranium and plutonium in samples taken from nuclear facilities are determined to detect undeclared nuclear materials and activities. In order to keep and enhance the reliability of the measurement results, validation of analytical methods and estimation of measurement uncertainty in such ultra-trace analysis should be properly done in accordance with worldwide standards. In this paper, the current activities on achievement of QA/QC (quality assurance and quality control) and estimation of measurement uncertainty in the ultra-trace analysis at a clean chemistry laboratory (CLEAR) of JAEA are reported.

Journal Articles

Selective detection of particles containing highly enriched uranium for nuclear safeguards environmental samples

Lee, C. G.; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki; Shinohara, Nobuo; Usuda, Shigekazu*

Journal of Nuclear Science and Technology, 46(8), p.809 - 813, 2009/08

A method to selectively detect uranium particles with higher $$^{235}$$U enrichment has been developed. The newly developed method involves three key components, (1) a two-step filtration system for particle recovery from swipe samples, (2) a system for controlling the etching time of fission track (FT) detector, (3) a system for comparing the FT morphologies and particle sizes. The method to screen uranium particles according to their enrichment is focused on detecting highly enriched uranium particles preferentially in various those recovered from swipe sample; this is one of the most important tasks involved in nuclear safeguards. In order to verify the effectiveness of the screening method developed, a mixture sample containing uranium particles with natural composition and those with 10% enrichment is used. It was shown that enrichment-based screening of uranium particles is possible by comparing the FT morphologies and particle sizes, in addition to controlling the etching time.

Journal Articles

Research and development on environmental radionuclides for nuclear non-proliferation at Japan Atomic Energy Agency

Usuda, Shigekazu; Shinohara, Nobuo; Sakurai, Satoshi; Magara, Masaaki; Miyamoto, Yutaka; Esaka, Fumitaka; Yasuda, Kenichiro; Kokubu, Yoko; Hirayama, Fumio; Lee, C. G.; et al.

KEK Proceedings 2007-16, p.13 - 22, 2008/02

For the purpose of controlling and monitoring radiations and radioactive materials emitted from nuclear facilities to the environment and also evaluating their effects, various R&D on environmental radioactivity has been carried out at Japan Atomic Energy Agency (JAEA). Especially, for the abolition of nuclear weapons and for peaceful uses nuclear energy, ultra-trace analysis of environmental samples for safeguards and ultra-high sensitive monitoring of radionuclides for the CTBT verification, which have been scheduled in the middle of 1990s, have been promotted under the auspices of the Japanese Government at JAERI, the former of JAEA. In this presentation, the outline of R&D on environmental radioactivity for nuclear non-proliferation is introduced. In addition, applications of the developed techniques and future perspectives will be discussed.

Journal Articles

Development of analytical technique for safeguards environmental samples at JAEA; Current status and development of analytical method for isotope ratios of plutonium particles

Magara, Masaaki; Usuda, Shigekazu; Sakurai, Satoshi; Shinohara, Nobuo; Esaka, Fumitaka; Kokubu, Yoko; Suzuki, Daisuke; Yasuda, Kenichiro; Lee, C. G.; Inagawa, Jun; et al.

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-29-Kai Nenji Taikai Rombunshu (CD-ROM), 6 Pages, 2008/00

JAEA has been developing, under the auspices of the Ministry of Education, Culture, Sports, Science and Technology of Japan, analytical techniques for ultra-trace amounts of nuclear materials in the environmental samples in order to contribute to the strengthened safeguards system. In January 2003, JAEA was qualified as a member of the IAEA network analytical laboratories (NWAL) for environmental sample analysis. Since then, JAEA has conducted the analysis of domestic and the IAEA samples. Two techniques, bulk and particle analyses, are available for the environmental samples and the latter method generally provides more detailed information about history of nuclear materials in a facility. However, isotope ratios of uranium are measured in the particle analysis at present and it is wished to develop analytical method for isotope ratios of plutonium in individual particles. We commence the development of the plutonium particle analysis and the consideration of age-dating for plutonium particles through the atomic ratio of Pu-241 and Am-241.

Journal Articles

Development of safeguards environmental sample analysis techniques at JAEA as a network laboratory of IAEA

Sakurai, Satoshi; Magara, Masaaki; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Inagawa, Jun; Suzuki, Daisuke; Iguchi, Kazunari; Kokubu, Yoko; et al.

STI/PUB/1298 (CD-ROM), p.791 - 799, 2007/08

no abstracts in English

Journal Articles

Development in fission track- thermal ionization mass spectrometry for particle analysis of safeguards environmental samples

Lee, C. G.; Iguchi, Kazunari; Inagawa, Jun; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki; Sakurai, Satoshi; Watanabe, Kazuo; Usuda, Shigekazu

Journal of Radioanalytical and Nuclear Chemistry, 272(2), p.299 - 302, 2007/05

 Times Cited Count:47 Percentile:93.88(Chemistry, Analytical)

no abstracts in English

Journal Articles

Numerical consideration for multiscale statistical process control method applied to nuclear material accountancy

Suzuki, Mitsutoshi; Hori, Masato; Aso, Ryoji; Usuda, Shigekazu

Journal of Nuclear Science and Technology, 43(10), p.1270 - 1279, 2006/10

 Times Cited Count:3 Percentile:24.11(Nuclear Science & Technology)

The multiscale statistical process control (MSSPC) method is applied to explain material unaccounted for (MUF) in large scale reprocessing plants using numerical calculations. Continuous wavelet functions are used to decompose the process data, which simulate batch operation superimposed by various types of disturbance, and the disturbance components included in the data are divided into time and frequency spaces. The diagnosis of MSSPC is applied to distinguish abnormal events from the process data and shows how to detect abrupt and protracted diversions using principle component analysis. Quantitative performance of MSSPC for the time series data is shown with average run lengths given by Monte-Carlo simulation to compare to the non-detection probability B. Recent discussion about bias corrections in material balances is introduced and another approach is presented to evaluate MUF without assuming the measurement error model.

Journal Articles

Development of analytical techniques for safeguards environmental samples at JAEA

Sakurai, Satoshi; Magara, Masaaki; Usuda, Shigekazu; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Inagawa, Jun; Suzuki, Daisuke; et al.

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-27-Kai Nenji Taikai Rombunshu (CD-ROM), 9 Pages, 2006/00

no abstracts in English

Journal Articles

Numerical consideration for multiscale statistical process control method applied to nuclear material accountancy

Suzuki, Mitsutoshi; Hori, Masato; Aso, Ryoji; Usuda, Shigekazu

Proceedings of INMM 47th Annual Meeting (CD-ROM), 8 Pages, 2006/00

The multiscale statistical process control (MSSPC) method is applied to explain material unaccounted for (MUF) in a large scale reprocessing plant using numerical calculations. Increasing the amount of nuclear material throughput per year, which is more than 5000kgPu in commercial reprocessing plant, the accumulated annual measurement errors will exceed 1SQ (=8kgPu) and frequent Near Real Time Accountancy (NRTA) and process monitoring measures are required to satisfy the IAEA safeguard criteria. In this study, continuous wavelet functions are used to decompose the process data, which is simulated batch operation mode superimposed by various types of disturbance, and the disturbance components constituting the data are divided into both time and frequency region. Because MSSPC based on wavelet decomposition provides efficient performance over a wide range of abnormal events, the protracted or abrupt diversion loss, not known a priori, can be detected for nuclear safeguards purpose. The diagnosis for MSSPC is applied to distinguish an abnormal event from the normal data and shows how to detect both types of diversion loss using principle component analysis (PCA). MUF data is generally supposed to be autocorrelated time series data. Quantitative performance of MSSPC for the time series data is shown with the average run lengths simulated by Monte-Calro calculation to compare the nondetection probability B. Recent discussion about bias corrections (BC) in material balances is introduced and other approach is presented to evaluate MUF in an explanatory manner without an adoption of BC.

Journal Articles

Study on the etching conditions of polycarbonate detectors for particle analysis of safeguards environmental samples

Iguchi, Kazunari; Esaka, Konomi; Lee, C. G.; Inagawa, Jun; Esaka, Fumitaka; Onodera, Takashi; Fukuyama, Hiroyasu; Suzuki, Daisuke; Sakurai, Satoshi; Watanabe, Kazuo; et al.

Radiation Measurements, 40(2-6), p.363 - 366, 2005/11

 Times Cited Count:11 Percentile:59.93(Nuclear Science & Technology)

In particle analysis for safeguards environmental samples, the fission track technique is very important to detect sub-micrometer particles containing uranium. In the technique the authors developed, the particles were recovered onto the polycarbonate membrane filter. The filter was dissolved in solvent and dried to form a thin film of detector, in which the particles were confined. After thermal neutron irradiation and etching, the particles of interest in the detector were easily identified with fission tracks, and were picked up for isotope ratio analysis. It was found, however, that the particles in the vicinity of the detector surface may fall off during the etching process. Therefore, optimization of the etching condition is required. In this work, the effects of etching time and enrichment of uranium in particles were investigated. Preliminary results suggest that etching time should be shorter with the increase in the enrichment.

Journal Articles

R&D on safeguards environmental sample analysis at JAERI

Sakurai, Satoshi; Magara, Masaaki; Usuda, Shigekazu; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Kono, Nobuaki; Inagawa, Jun; et al.

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

no abstracts in English

Journal Articles

Development of analytical techniques for safeguards environmental samples; Bulk analysis

Hirayama, Fumio; Kurosawa, Setsumi; Magara, Masaaki; Ichimura, Seiji; Kono, Nobuaki; Suzuki, Daisuke; Inagawa, Jun; Goto, Mototsugu; Sakurai, Satoshi; Watanabe, Kazuo; et al.

KEK Proceedings 2005-4, p.184 - 192, 2005/08

no abstracts in English

Journal Articles

Development of analytical techniques for safeguards environmental samples

Magara, Masaaki; Usuda, Shigekazu; Sakurai, Satoshi; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Kono, Nobuaki; Inagawa, Jun; et al.

Dai-26-Kai Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Nenji Taikai Rombunshu, p.157 - 164, 2005/00

JAERI has conducted the analysis of domestic and the IAEA samples. JAERI is developing the analytical techniques to improve the analytical ability for the safeguards environmental samples. For bulk analysis, study is focused on the improvement of reliability of isotope ratio measurements by ICP-MS. New chemical separation techniques are under development and a desolvation module is introduced to reduce the polyatomic interferences. In particle analysis, the sample preparation procedure for SIMS method is modified to measure the $$^{234}$$U/$$^{238}$$U and $$^{236}$$U/$$^{238}$$U ratios for individual particles. We are also developing fission track-TIMS method to measure uranium isotope ratios in particles of sub-micrometer size. A screening instrument of X-ray fluorescent analysis is equipped to measure elemental distribution on a swipe surface.

Journal Articles

Development of fission track-thermal ionization mass spectrometry method for safeguards environmental samples

Lee, C. G.; Iguchi, Kazunari; Inagawa, Jun; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki; Sakurai, Satoshi; Watanabe, Kazuo; Usuda, Shigekazu

Dai-26-Kai Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Nenji Taikai Rombunshu, p.171 - 178, 2005/00

Particle analysis by FT-TIMS method is effective for safeguards environmental samples because the isotope ratios of sub-micrometer particles can be determined. The FT-TIMS method developed by the authors, in which the particles are confined in the detector, has merits such as high detection efficiency and the possibility as a screening method for uranium particles according to their enrichment by controlling the etching time. However, it was found that a part of uranium particles contained in a detector may dissolve during the etching process of the detector. In order to overcome the problem, we are developing a novel sample preparing method in which the FT detector and the particle layer are separated. In the conventional FT sample of separated type, the detection process of particles of interest is time-consuming and complicated due to the discrepancy in position between tracks and particles. In contrast, the discrepancy was solved by fixing a part of a detector and a particle layer in our method, which improved the detection efficiency of particles containing fissile materials.

Journal Articles

Current status and newly introduced analytical techniques for safeguards environmental samples at JAERI

Magara, Masaaki; Usuda, Shigekazu; Sakurai, Satoshi; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Kono, Nobuaki; Inagawa, Jun; et al.

Proceedings of INMM 46th Annual Meeting (CD-ROM), 8 Pages, 2005/00

JAERI has been developing analytical techniques for ultra-trace amounts of nuclear materials in the environmental samples in order to contribute to the strengthened safeguards system. Development of essential techniques for bulk and particle analysis of the environmental swipe sample has been established as an ultra-trace analytical method of uranium and plutonium. In January 2003, JAERI was qualified as a member of the IAEA network analytical laboratories for environmental samples. Since then, JAERI has conducted the analysis of domestic and the IAEA samples. From Japanese fiscal year 2003, the second phase of the project was started for the development of advanced techniques, such as analyzing minor actinides and fission products as well as uranium and plutonium, particle analysis using fission-track technique, more efficient particle analysis using ICP-TOFMS and screening by X-ray fluorescent analysis. This paper deals with the progress in the development of the new techniques, applications and future perspective.

Journal Articles

Isotope ratio analysis of individual uranium particles for safeguards

Esaka, Fumitaka; Watanabe, Kazuo; Fukuyama, Hiroyasu; Onodera, Takashi; Esaka, Konomi; Inagawa, Jun; Iguchi, Kazunari; Suzuki, Daisuke; Lee, C. G.; Magara, Masaaki; et al.

Dai-25-Kai Kaku Busshitsu Kanri Gakkai Nihon Shibu Nenji Taikai Rombunshu, p.128 - 135, 2004/00

Japan Atomic Energy Research Institute (JAERI) was qualified as a member of the IAEA network analytical laboratories (NWALs) for particle and bulk analyses of safeguards environmental samples in January 2003. The particle analysis gives more detailed information on nuclear facility operation than the bulk analysis because the isotope ratios of nuclear materials in the samples collected inside nuclear facilities (swipe samples) can be determined for individual particles. We applied, as a method for uranium isotope ratio measurement, secondary ion mass spectrometry (SIMS) to particle analysis. Prior to the SIMS analysis, the particles in a swipe sample are recovered onto a carrier by impaction. The carriers with the recovered particles are then screened by total reflection X-ray fluorescence spectrometry. We integrated these techniques into a standard procedure, which is applied to domestic and IAEA swipe samples routinely.

Journal Articles

Development for ultra-trace analysis method of U and Pu in safeguards environmental samples at the clean facility

Takahashi, Masato; Magara, Masaaki; Sakurai, Satoshi; Kurosawa, Setsumi; Esaka, Fumitaka; Taguchi, Takuji; Takai, Konomi; Fukuyama, Hiroyasu; Lee, C. G.; Yasuda, Kenichiro; et al.

Dai-23-Kai Kaku Busshitsu Kanri Gakkai Nihon Shibu Nenji Taikai Rombunshu, 8 Pages, 2002/09

Based on the strengthen safeguard program of the IAEA to detect undeclared nuclear activities, the method of precise and accurate isotope ratio determination for uranium and plutonium in the environmental samples (cotton swipes) has been developed at JAERI. The samples should be treated in clean environment in order to secure the analytical reliability by eliminating external contamination from the samples containing trace amount of uranium and plutonium. Since the measurement by ICP-MS is favorable to bulk analysis from view points of analytical capacity and operation simplicity, we have studied sample preparation procedures for the trace amount of uranium and plutonium to be applied to ICP-MS. Up to the present, interfering factors involved during analytical processes and the ICP-MS measurement of uranium and plutonium were examined. As a result, uranium and plutonium isotope measurement more than 100 pg and 100 fg, respectively, became possible at JAERI clean facility. At presentation, other progress in the development will be reported.

Journal Articles

Recent status of developments in analytical methods for safeguards environmental samples; Focused on particle analysis

Esaka, Fumitaka; Magara, Masaaki; Hanzawa, Yukiko; Sakurai, Satoshi; Taguchi, Takuji; Takai, Konomi; Sakakibara, Takaaki; Kurosawa, Setsumi; Takahashi, Masato; Yasuda, Kenichiro; et al.

Dai-22-Kai Kaku Busshitsu Kanri Gakkai Nihon Shibu Nenji Taikai Rombunshu, 8 Pages, 2001/11

no abstracts in English

Journal Articles

Current status of JAERI program on development of ultra-trace-analytical technology for safeguards environmental samples

Adachi, Takeo; Usuda, Shigekazu; Watanabe, Kazuo; Sakurai, Satoshi; Magara, Masaaki; Hanzawa, Yukiko; Esaka, Fumitaka; Yasuda, Kenichiro; Saito, Yoko; Takahashi, Masato; et al.

IAEA-SM-367/10/02 (CD-ROM), 8 Pages, 2001/00

no abstracts in English

37 (Records 1-20 displayed on this page)