Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Katsumata, Tetsuhiro*; Suzuki, Ryo*; Sato, Naoto*; Oda, Ryoya*; Motoyama, Shingo*; Suzuki, Shumpei*; Nakashima, Mamoru*; Inaguma, Yoshiyuki*; Mori, Daisuke*; Aimi, Akihisa*; et al.
Chemistry of Materials, 36(8), p.3697 - 3704, 2024/04
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)A perovskite-type oxynitride BaFeOF was prepared by high-pressure synthesis. Since the SHG signal was observed in the obtained material, suggesting the existence of spontaneous polarization, the mechanism of polarization was investigated by synchrotron high-energy X-ray diffraction. The obtained pair distribution functions were fitted, and a local polarization mechanism with different orientations was found. Since BaFeOF is also a magnetic material, a magnetic domain and a ferroelectric domain are considered to coexist.
Sato, Tomonori; Hata, Kuniki; Kaji, Yoshiyuki; Taguchi, Mitsumasa*; Seito, Hajime*; Inoue, Hiroyuki*; Tada, Eiji*; Abe, Hiroshi*; Akiyama, Eiji*; Suzuki, Shunichi*
Isotope News, (782), p.40 - 44, 2022/08
The stagnant water in the reactor building at Fukushima Daiichi Nuclear Power Station (1F) is exposed to the radiation from fuel debris and radioactive species. This water contains much amounts of impurities from the seawater which was injected in the emergency cooling. The impurities will affect the radiolysis and corrosive conditions in the water under irradiation. So, the water radiolysis data, corrosion data of steels under irradiations, and the evaluated potential impacts of corrosion in the decommissioning process of 1F are arranged as the database for corrosion under irradiation. This paper introduces the outline of this database.
Sato, Tomonori; Hata, Kuniki; Kaji, Yoshiyuki; Ueno, Fumiyoshi; Inoue, Hiroyuki*; Taguchi, Mitsumasa*; Seito, Hajime*; Tada, Eiji*; Abe, Hiroshi*; Akiyama, Eiji*; et al.
JAEA-Review 2021-001, 123 Pages, 2021/06
In the implement of the decommissioning of Fukushima Daiichi Nuclear Power Station (1F), there are many problems to be solved. Specially, the mitigation of the aging degradation by the corrosion of the structural materials is important to implement the decommissioning safely and continuously. However, there are limited data for the environmental factors of corrosion in 1F, and the condition of 1F is continuously changing. So, the literature data for the water radiolysis and the corrosion under irradiation are listed as the database of corrosion under irradiation in this report. And the new obtained radiolysis and corrosion data, which have not been reported in the literature and will be required in the decommissioning of 1F, are reported.
Miura, Daisuke*; Kumada, Takayuki; Sekine, Yurina; Motokawa, Ryuhei; Nakagawa, Hiroshi; Oba, Yojiro; Ohara, Takashi; Takata, Shinichi; Hiroi, Kosuke; Morikawa, Toshiaki*; et al.
Journal of Applied Crystallography, 54(2), p.454 - 460, 2021/04
Times Cited Count:1 Percentile:14.61(Chemistry, Multidisciplinary)We developed a spin-contrast-variation neutron powder diffractometry technique that extracts the structure factor of hydrogen atoms, namely, the contribution of hydrogen atoms to a crystal structure factor. Crystals of L-glutamic acid were dispersed in a dpolystyrene matrix containing 4-methacryloyloxy-2,2,6,6,-tetramethyl-1-piperidinyloxy (TEMPO methacrylate) to polarize their proton spins dynamically. The intensities of the diffraction peaks of the sample changed according to the proton polarization, and the structure factor of the hydrogen atoms was extracted from the proton-polarization dependent intensities. This technique is expected to enable analyses of the structures of hydrogen-containing materials that are difficult to determine with conventional powder diffractometry.
Nagae, Daisuke*; Abe, Yasushi*; Okada, Shunsuke*; Omika, Shuichiro*; Wakayama, Kiyoshi*; Hosoi, Shun*; Suzuki, Shinji*; Moriguchi, Tetsuro*; Amano, Masamichi*; Kamioka, Daiki*; et al.
Nuclear Instruments and Methods in Physics Research A, 986, p.164713_1 - 164713_7, 2021/01
Times Cited Count:6 Percentile:64.51(Instruments & Instrumentation)Suzuki, Hiroaki*; Morita, Yoshihiro*; Naito, Masanori*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki
Mechanical Engineering Journal (Internet), 7(3), p.19-00450_1 - 19-00450_17, 2020/06
In this study, the SAMPSON code was modified to evaluate severe accidents in a spent fuel pool (SFP). Air oxidation models based on oxidation data obtained on the Zircaroy-4 cladding (ANL model) and the Zircaroy-2 cladding (JAEA model) were included in the modified SAMPSON code. Experiments done by Sandia National Laboratory using simulated fuel assemblies equivalent to those of an actual BWR plant were analyzed by the modified SAMPSON code to confirm the functions for analysis of the severe SFP accidents. The rapid fuel rod temperature rise due to the Zr air oxidation reaction could be reasonably evaluated by the SAMPSON analysis. The SFP accident analyses were conducted with different initial water levels which were no water, water level at bottom of active fuel, and water level at half of active fuel. The present analysis showed that the earliest temperature rise of the fuel rod surface occurred when there was no water in the SFP and natural circulation of air became possible.
Iida, Kazuki*; Kofu, Maiko; Suzuki, Katsuhiro*; Murai, Naoki; Kawamura, Seiko; Kajimoto, Ryoichi; Inamura, Yasuhiro; Ishikado, Motoyuki*; Hasegawa, Shunsuke*; Masuda, Takatsugu*; et al.
Journal of the Physical Society of Japan, 89(5), p.053702_1 - 053702_5, 2020/05
Times Cited Count:20 Percentile:78.58(Physics, Multidisciplinary)Tang, T. L.*; Uesaka, Tomohiro*; Kawase, Shoichiro; Beaumel, D.*; Dozono, Masanori*; Fujii, Toshihiko*; Fukuda, Naoki*; Fukunaga, Taku*; Galindo-Uribarri, A.*; Hwang, S. H.*; et al.
Physical Review Letters, 124(21), p.212502_1 - 212502_6, 2020/05
Times Cited Count:18 Percentile:73.44(Physics, Multidisciplinary)The structure of a neutron-rich F nucleus is investigated by a quasifree () knockout reaction. The sum of spectroscopic factors of orbital is found to be 1.0 0.3. The result shows that the O core of F nucleus significantly differs from a free O nucleus, and the core consists of 35% O, and 65% excited O. The result shows that the O core of F nucleus significantly differs from a free O nucleus. The result may infer that the addition of the proton considerably changes the neutron structure in F from that in O, which could be a possible mechanism responsible for the oxygen dripline anomaly.
Omori, Atsushi*; Akiyama, Eiji*; Abe, Hiroshi*; Hata, Kuniki; Sato, Tomonori; Kaji, Yoshiyuki; Inoue, Hiroyuki*; Taguchi, Mitsumasa*; Seito, Hajime*; Tada, Eiji*; et al.
Zairyo To Kankyo, 69(4), p.107 - 111, 2020/04
To evaluate the effect of oxidants, which are formed by radiolysis of water under gamma ray irradiation, on the corrosion of a carbon steel in humid environment, ozone was introduced as a model oxidant in to humidity-controlled air at 50C in a thermo-hygrostat chamber. Corrosion monitoring was performed by using an Atmospheric Corrosion Monitor-type (ACM) sensor consisting of a carbon steel anode and an Ag cathode. The output current of the ACM sensor was increased with the increase in relative humidity and it was obviously increased with the increase in the introduced ozone concentration at each relative humidity. The results indicate that ozone accelerates the corrosion of the carbon steel. The effect of ozone on the corrosion acceleration is attributed to the fast reduction reaction and fast dissolution reaction in to water compared to that of oxygen.
Sonnenschein, V.*; Tsuji, Yoshiyuki*; Kokuryu, Shoma*; Kubo, Wataru*; Suzuki, So*; Tomita, Hideki*; Kiyanagi, Yoshiaki*; Iguchi, Tetsuo*; Matsushita, Taku*; Wada, Nobuo*; et al.
Review of Scientific Instruments, 91(3), p.033318_1 - 033318_12, 2020/03
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Katsumata, Tetsuhiro*; Suzuki, Ryo*; Sato, Naoto*; Suzuki, Shumpei*; Nakashima, Mamoru*; Inaguma, Yoshiyuki*; Mori, Daisuke*; Aimi, Akihisa*; Yoneda, Yasuhiro
Journal of Solid State Chemistry, 279, p.120919_1 - 120919_8, 2019/11
Times Cited Count:11 Percentile:56.07(Chemistry, Inorganic & Nuclear)Matsushita, Taku*; Sonnenschein, V.*; Guo, W.*; Hayashida, Hirotoshi*; Hiroi, Kosuke; Hirota, Katsuya*; Iguchi, Tetsuo*; Ito, Daisuke*; Kitaguchi, Masaaki*; Kiyanagi, Yoshiaki*; et al.
Journal of Low Temperature Physics, 196(1-2), p.275 - 282, 2019/07
Times Cited Count:1 Percentile:4.22(Physics, Applied)Segawa, Tomoomi; Kawaguchi, Koichi; Kato, Yoshiyuki; Ishii, Katsunori; Suzuki, Masahiro; Fujita, Shunya*; Kobayashi, Shohei*; Abe, Yutaka*; Kaneko, Akiko*; Yuasa, Tomohisa*
Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 9 Pages, 2019/05
A solution of plutonium nitrate and uranyl nitrate is converted into a mixed oxide by microwave heating denitration method. In the present study, for improving the efficiency of microwave heating and achieving high-temperature uniformity to produce homogeneous UO powder, the microwave heating test of potassium chloride and uranyl nitrate solution, and numerical simulation analysis were conducted. The potassium chloride agar was adjusted to the dielectric loss, which is close to that of the uranyl nitrate solution and the optimum support table height was estimated to be 50 mm for denitration of the uranyl nitrate solution by microwave heating. The adiabator improved the efficiency of microwave heating denitration. Moreover, the powder yield was improved by using the adiabator owing to ease of scraping of the denitration product from the bottom of the denitration vessel.
Morita, Yoshihiro*; Suzuki, Hiroaki*; Naito, Masanori*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05
In this study, the SAMPSON code was modified to evaluate severe accidents in a spent fuel pool (SFP). Not only the SFP but also upper spaces of the SFP, walls of the reactor building, and the blowout panel were included. Air oxidation models obtained by the Zircaroy-4 cladding (ANL model) and the Zircaroy-2 cladding (JAEA model) were included in the modified SAMPSON code. Experiments done by Sandia National Laboratory using simulated fuel assemblies equivalent to those of an actual BWR plant were analyzed by the modified SAMPSON code to confirm the functions for analysis of the severe SFP accidents.
Suzuki, Hiroaki*; Morita, Yoshihiro*; Naito, Masanori*; Nemoto, Yoshiyuki; Nagatake, Taku; Kaji, Yoshiyuki
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 7 Pages, 2019/05
In this paper, modification of the SAMPSON code was carried out to enable the analysis of spray cooling. The SAMPSON analysis of a spray cooling experiment was performed to confirm reproducibility of spray cooling behavior of fuel claddings. The modified SAMPSON code was applied to a hypothetical loss-of-coolant accident analysis of the SFP. Effectiveness of spray cooling on cladding temperature behavior was investigated. The SAMPSON analysis showed that spraying from the top of the SFP was effective for cooling the fuel assemblies exposed to the gas phase.
Kaji, Yoshiyuki; Nemoto, Yoshiyuki; Nagatake, Taku; Yoshida, Hiroyuki; Tojo, Masayuki*; Goto, Daisuke*; Nishimura, Satoshi*; Suzuki, Hiroaki*; Yamato, Masaaki*; Watanabe, Satoshi*
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05
In this research program, cladding oxidation model in SFP accident condition, and numerical simulation method to evaluate capability of spray cooling system which was deployed for spent fuel cooling during SFP accident, have been developed. These were introduced into the severe accident codes such as MAAP and SAMPSON, and SFP accident analyses were conducted. Analyses using Computational Fluid Dynamics (CFD) code were conducted as well for the comparison with SA code analyses and investigation of detail in the SFP accident. In addition, three-dimensional criticality analysis method was developed as well, and safer loading pattern of spent fuels in pool was investigated.
Kasahara, Seiji; Imai, Yoshiyuki; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; Yan, X.
Nuclear Engineering and Design, 329, p.213 - 222, 2018/04
Times Cited Count:23 Percentile:90.88(Nuclear Science & Technology)A conceptual design of a practical large scale plant of the thermochemical water splitting iodine-sulfur (IS) process flowsheet was carried out as a heat application of JAEA's commercial high temperature gas cooled reactor GTHTR300C plant design. Innovative techniques proposed by JAEA were applied for improvement of hydrogen production thermal efficiency; depressurized flash concentration HSO using waste heat from Bunsen reaction, prevention of HSO vaporization from a distillation column by introduction of HSO solution from a flash bottom, and I condensation heat recovery in an HI distillation column. Hydrogen of about 31,900 Nm/h would be produced by 170 MW heat from the GTHTR300C. A thermal efficiency of 50.2% would be achievable with incorporation of the innovative techniques and high performance HI concentration and decomposition components and heat exchangers expected in future R&D.
Yan, X.; Sato, Hiroyuki; Sumita, Junya; Nomoto, Yasunobu*; Horii, Shoichi*; Imai, Yoshiyuki; Kasahara, Seiji; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; et al.
Nuclear Engineering and Design, 329, p.223 - 233, 2018/04
Times Cited Count:23 Percentile:90.88(Nuclear Science & Technology)The pre-licensing design of an HTGR cogeneration test plant to be coupled to JAEA's existing test reactor HTTR is presented. The plant is designed to demonstrate the system of JAEA commercial plant design GTHTR300C. With construction planned to be completed around 2025, the test plant is expected to be the first-of-a-kind nuclear system operating on two of the advanced energy conversion systems attractive for the HTGR closed cycle helium gas turbine for power generation and thermochemical iodine-sulfur water-splitting process for hydrogen production.
Kasahara, Seiji; Imai, Yoshiyuki; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; Yan, X.
Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.491 - 500, 2016/11
A conceptual design of a practical large scale plant of the thermochemical water splitting iodine-sulfur (IS) process flowsheet was carried out as a heat application of Japan Atomic Energy Agency's commercial Gas Turbine High Temperature Reactor Cogeneration (GTHTR300C) plant design. Innovative techniques proposed by JAEA were applied for improvement of hydrogen production thermal efficiency; flash concentration of HSO using waste heat from Bunsen reaction, prevention of HSO vaporization from a distillation column by introduction of HSO solution, and I condensation heat recovery by direct contact heat exchange in the HI distillation column. A simulation of material and heat balance showed hydrogen of about 31,900 Nm/h was produced by 170 MW heat from the GTHTR300C. A process thermal efficiency of 50.2% was achievable with incorporation of the innovative techniques and several high performance components expected in future R&D.
Yan, X.; Sato, Hiroyuki; Sumita, Junya; Nomoto, Yasunobu; Horii, Shoichi; Imai, Yoshiyuki; Kasahara, Seiji; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; et al.
Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.827 - 836, 2016/11
Pre-licensing basic design for a cogenerating HTGR test plant system is presented. The plant to be coupled to existing 30 MWt 950C test reactor HTTR is intended as a system technology demonstrator for GTHTR300C plant design. More specifically the test plant of HTTR-GT/H aims to (1)demonstrate the licensability of the GTHTR300C for electricity production by gas turbine and hydrogen cogeneration by thermochemical process and (2) confirm the operation control and safety of such cogeneration system. With construction and operation completion by 2025, the test plant is expected to be the first of a kind HTGR-powered cogeneration plant operating on the two advanced energy conversion systems of closed cycle helium gas turbine for power generation and thermochemical iodine-sulfur water-splitting process for hydrogen production.