Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
Journal of the American Society for Mass Spectrometry, 35(6), p.1178 - 1183, 2024/05
Times Cited Count:0 Percentile:0.00(Biochemical Research Methods)A sensitive analytical technique was investigated in order to determine 10 order of U/U ratio in the sub-ng of uranium using a multi-collector ICP-MS. First, the solution volume was concentrated to one tenth to obtain higher intensities. Next, data acquisition was started from the beginning of the solution uptake and continued until all solution was exhausted. Taking advantage of multi-collector measurement, all data were used with excepting the portion affected by air mixing at the beginning and end of sample introduction. The isotope ratios were calculated from the total counts of each isotope. This technique was applied to U isotope standard (IRMM-184) to measure the 10 order of U/U ratio in the sub-ng of uranium. Measured values were in good agreement with the certified value within the uncertainity (=2). The uncertainties obtained with this new technique (32% on average) were revised to be 10 times smaller than those obtained with the conventionalmethod.
Sakurai, Hirohisa*; Kurebayashi, Yutaka*; Suzuki, Soichiro*; Horiuchi, Kazuho*; Takahashi, Yui*; Doshita, Norihiro*; Kikuchi, Satoshi*; Tokanai, Fuyuki*; Iwata, Naoyoshi*; Tajima, Yasushi*; et al.
Physical Review D, 109(10), p.102005_1 - 102005_18, 2024/05
Times Cited Count:0 Percentile:0.00(Astronomy & Astrophysics)Secular variations of galactic cosmic rays (GCRs) are inseparably associated with the galactic activities and should reflect the environments of the local galactic magnetic field, interstellar clouds, and nearby supernova remnants. The high-energy muons produced in the atmosphere by high-energy GCRs can penetrate deep underground and generate radioisotopes in the rock. As long lived radionuclides such as Be and Al have been accumulating in these rocks, concentrations of Be and Al can be used to estimate the long-term variations in high-energy muon yields, corresponding to those in the high-energy GCRs over a few million years. This study measured the production cross sections for muon induced Be and Al by irradiating positive muons with the momentum of 160 GeV/c on the synthetic silica plates and the granite core at the COMPASS experiment line in CERN SPS. In addition, it the contributions of the direct muon spallation reaction and the nuclear reactions by muon-induced particles on the production of long lived radionuclides in the rocks were clarified.
Kamikawa, Yutaka; Suzuki, Makoto; Agake, Toshiki; Murakami, Takahiko; Morita, Yusuke; Shiina, Hidenori; Fukushima, Manabu; Hirane, Nobuhiko; Ouchi, Yasuhiro
JAEA-Technology 2023-030, 57 Pages, 2024/03
Owing to the publication of the latest data about aircraft crashes by Nuclear Regulation Authority (NRA), it was necessary to re-evaluate the probabilities of aircraft crashes for Nuclear Science Research Institute (NSRI). By using of the assessment method provided in "Regulatory Guide of the Assessment Standard for Probability of Airplane Crash on a Nuclear Power Reactor Facility", we re-evaluated the probabilities of aircraft crashes against the nuclear facilities in NSRI. As a result of the evaluations, the sum of the probabilities of aircraft crashes against Waste Treatment Facilities (maximum probability among all nuclear facilities in NSRI) is 5.6810 (times/(reactor year)) which is lower than 10 (times/(reactor year)) that is the assessment criterion whether aircraft crashes is considered to be "anticipated external human induced events" in design basis or not.
Tomita, Ryohei; Tomita, Jumpei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
Hosha Kagaku, (48), p.1 - 15, 2023/09
Secondary Ion Mass Spectrometry (SIMS) is the method to detect secondary ions produced by the sputtering of primary ions. SIMS is one of effective method to measure isotopic composition of particles containing nuclear material in environmental sample for safeguards. We are a group member of the International Atomic Energy Agency (IAEA)'s network of analytical laboratories and have developed analytical techniques using SIMS and other mass spectrometers for nuclear safeguards. We will introduce the principle of SIMS and analytical techniques developed by our group to measure isotopic composition of uranium particles which having a particle diameter of micron order in environmental sample for safeguards.
Miyamoto, Yutaka; Suzuki, Daisuke; Tomita, Ryohei; Tomita, Jumpei; Yasuda, Kenichiro
Isotope News, (786), p.22 - 25, 2023/04
no abstracts in English
Nagata, Shuhei*; Ogawa, Yusuke*; Suzuki, Satoru*; Inoue, Hiroyuki*; Watanabe, Yutaka*; Yamamoto, Masahiro*; Abe, Hiroshi*; Mitsui, Seiichiro
NUMO-TR-22-02, p.21 - 22, 2023/03
no abstracts in English
Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
KEK Proceedings 2022-2, p.154 - 158, 2022/11
Precise determination of minor U isotopes (U and U) of particles from the safeguard environmental samples is powerful method for detecting the undeclared nuclear activities. In this study, preparation method of U particle was examined to utilize for the minor U isotope determination. The porous silica particles were used as the particle matrix and lutetium was mixed to the impregnation solution as U impregnation indicator for the particle picking. The result of the Scanning Electron Microscope indicated that the contacting the solution with Si particles overnight gently could produce the impregnated particles effectively rather than the mixing them with PFA stick.
Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka
KEK Proceedings 2022-2, p.108 - 113, 2022/11
Automated Particle Measurement (APM) is the first measurement of environmental sample for safeguard purpose. APM tells us the number of particles in sample, their enrichment and their location. Precision and accuracy of APM is easily affected by particle condition. We have investigated how influential baking temperature in sample preparation are for uranium secondary ion quantity, uranium hydride generation and particle crystallinity. Our experimental results showed that baking temperature of 800C reduced uranium secondary ion quantity to 33% compared with baking at 350C. Uranium hydride generation ratio of the sample baked at 850C was also 4 times higher than the sample baked at 350C. Baking at 850C raised only crystallinity of uranium particles. Baking sample at too high temperature caused less uranium secondary ion generation and much more uranium hydride generation. It made precision and accuracy of APM worse. In our experiment, baking at 350C is suitable for uranium particles in the safeguards sample.
Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka
KEK Proceedings 2021-2, p.146 - 150, 2021/12
no abstracts in English
Suzuki, Daisuke; Tomita, Ryohei; Tomita, Jumpei; Esaka, Fumitaka; Yasuda, Kenichiro; Miyamoto, Yutaka
Journal of Radioanalytical and Nuclear Chemistry, 328(1), p.103 - 111, 2021/04
Times Cited Count:3 Percentile:37.09(Chemistry, Analytical)An analytical technique was developed to determine the age of uranium particles for safeguards. After the chemical separation of uranium and thorium, the Th/U ratio was measured using single-collector inductively coupled plasma mass spectrometry and a U-based reference material comprising a certain amount of Th as a progeny nuclide of U. The results allowed us to determine the purification age of two certified materials, i.e., U-850 and U-100, which was in good agreement with the reference purification age (61 y). Moreover, the age of a single U-850 particle was determined with a difference of -28 to 2 years from the reference date.
Go, Shintaro*; Ideguchi, Eiji*; Yokoyama, Rin*; Aoi, Nori*; Azaiez, F.*; Furutaka, Kazuyoshi; Hatsukawa, Yuichi; Kimura, Atsushi; Kisamori, Keiichi*; Kobayashi, Motoki*; et al.
Physical Review C, 103(3), p.034327_1 - 034327_8, 2021/03
Times Cited Count:4 Percentile:49.55(Physics, Nuclear)Tsunoda, Naofumi*; Otsuka, Takaharu; Takayanagi, Kazuo*; Shimizu, Noritaka*; Suzuki, Toshio*; Utsuno, Yutaka; Yoshida, Sota*; Ueno, Hideki*
Nature, 587, p.66 - 71, 2020/11
Times Cited Count:52 Percentile:94.03(Multidisciplinary Sciences)no abstracts in English
Suzuki, Takayuki*; Yoshida, Hiroyuki; Horiguchi, Naoki; Yamamura, Sota*; Abe, Yutaka*
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 7 Pages, 2020/08
Otsuka, Takaharu*; Gade, A.*; Sorlin, O.*; Suzuki, Toshio*; Utsuno, Yutaka
Reviews of Modern Physics, 92(1), p.015002_1 - 015002_52, 2020/03
Times Cited Count:244 Percentile:96.42(Physics, Multidisciplinary)no abstracts in English
Fujita, Hirohiko*; Fujita, Yoshitaka*; Utsuno, Yutaka; Yoshida, Kenichi*; Adachi, Tatsuya*; Algora, A.*; Csatls, M.*; Deaven, J. M.*; Estevez-Aguado, E.*; Guess, C. J.*; et al.
Physical Review C, 100(3), p.034618_1 - 034618_13, 2019/09
Times Cited Count:14 Percentile:76.19(Physics, Nuclear)no abstracts in English
Segawa, Tomoomi; Kawaguchi, Koichi; Kato, Yoshiyuki; Ishii, Katsunori; Suzuki, Masahiro; Fujita, Shunya*; Kobayashi, Shohei*; Abe, Yutaka*; Kaneko, Akiko*; Yuasa, Tomohisa*
Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 9 Pages, 2019/05
A solution of plutonium nitrate and uranyl nitrate is converted into a mixed oxide by microwave heating denitration method. In the present study, for improving the efficiency of microwave heating and achieving high-temperature uniformity to produce homogeneous UO powder, the microwave heating test of potassium chloride and uranyl nitrate solution, and numerical simulation analysis were conducted. The potassium chloride agar was adjusted to the dielectric loss, which is close to that of the uranyl nitrate solution and the optimum support table height was estimated to be 50 mm for denitration of the uranyl nitrate solution by microwave heating. The adiabator improved the efficiency of microwave heating denitration. Moreover, the powder yield was improved by using the adiabator owing to ease of scraping of the denitration product from the bottom of the denitration vessel.
Miyamoto, Yutaka; Yasuda, Kenichiro; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki
KEK Proceedings 2017-6, p.292 - 298, 2017/11
Our updated analytical techniques of ultra-trace plutonium in the IAEA environmental samples by ICP-MS were mentioned. Some careful techniques to accurately determine ultra-trace plutonium in the range of femto-grams to pico-grams were introduced. The uncertainties of analytical results were estimated according to the GUM concept. Our trials of determination of sub-femto grams americium in an environmental sample were also mentioned.
Takagai, Yoshitaka*; Furukawa, Makoto*; Kameo, Yutaka; Matsueda, Makoto; Suzuki, Katsuhiko*
Bunseki Kagaku, 66(4), p.223 - 231, 2017/04
Times Cited Count:5 Percentile:17.68(Chemistry, Analytical)no abstracts in English
Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki
Talanta, 165, p.122 - 127, 2017/04
Times Cited Count:17 Percentile:54.49(Chemistry, Analytical)The isotope ratios of Pu/Pu, Pu/Pu, Pu/Pu, and Pu/Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the Pu/Pu, Pu/Pu, and Pu/Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of uranium, plutonium and americium with UTEVA resins. Furthermore, Pu/Pu isotope ratios were able to be calculated by using both the Pu/(Pu+Pu) activity ratios that had been measured through alpha spectrometry and the Pu/Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including Pu/Pu, in individual U-Pu mixed oxide particles.
Esaka, Fumitaka; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki
Journal of Radioanalytical and Nuclear Chemistry, 306(2), p.393 - 399, 2015/11
Times Cited Count:6 Percentile:43.95(Chemistry, Analytical)An analytical technique was developed by a combination of single particle dissolution, chemical separation of uranium, plutonium and americium with extraction chromatography using UTEVA resins and measurement with inductively coupled plasma mass spectrometry (ICP-MS). This method was applied to plutonium isotope ratio analysis of individual U-Pu particles with U/Pu ratios ranging from 1 to 70. Consequently, Pu/Pu, Pu/Pu and Pu/Pu isotope ratios were successfully determined, while it was impossible to determine Pu/Pu ratios due to the high process blank values on m/z 238.