Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Otsuka, Naohiko*; Tada, Kenichi; Cabellos, O.*; Iwamoto, Osamu
Annals of Nuclear Energy, 212, p.110977_1 - 110977_9, 2025/03
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The uranium-233 neutron capture cross section between 3 keV and 1 MeV was evaluated considering the recent new alpha-value measurement performed at the Los Alamos National Laboratory LANCE facility. The obtained capture cross section is systematically lower than the capture cross section in the JENDL-5 library and the reduction is close to 50% around 20 keV. The newly evaluated cross section was validated against 166 criticality experiments chosen from the ICSBEP handbook by performing Monte Carlo neutron transport calculation with the JENDL-5 library, and slight reduction of the chi-square value was achieved by adoption of the newly evaluated capture cross section.
Tada, Kenichi; Kawase, Shoichiro*
Kaku Deta Nyusu (Internet), (140), p.26 - 46, 2025/02
This article summarizes presentations at the IAEA technical meeting on nuclear data retrieval, dissemination, and data portals held in 11-15 November 2024. The purpose of this technical meeting is to discuss nuclear data retrieval, dissemination of data and data portals and to present new developments and future plans. This article explains the overview of presentations in this meeting.
Watanabe, Tomoaki; Suyama, Kenya; Tada, Kenichi; Ferrer, R. M.*; Hykes, J.*; Wemple, C. A.*
Nuclear Science and Engineering, 198(11), p.2230 - 2239, 2024/11
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)A new nuclear data library for the advanced lattice physics code CASMO5 has been prepared based on JENDL-5. In JENDL-5, many essential nuclides for conventional LWR analysis have also been modified based on state-of-the-art evaluations. The new JENDL-5-based CASMO5 library was prepared by replacing as much of the nuclear data of the current CASMO5 ENDF/B-VII.1-based library as possible with JENDL-5. This study verified and validated the new library. Verifications were performed based on the OECD/NEA burnup credit criticality safety benchmark phase III-C, and the calculated k and fuel compositions of the BWR fuel assembly were compared with reported benchmark results. Comparison with the MCNP6.2 result was also performed using the same benchmark model. In addition, the TCA critical experiment and Takahama-3 post-irradiation experiment were used for validation. The results indicate that the new library performs well and is comparable to the ENDF/B-VII.1-based library in predictions of reactivity and fuel compositions for LWR systems.
Kamiya, Tomohiro; Nagatake, Taku; Ono, Ayako; Tada, Kenichi; Kondo, Ryoichi; Nagaya, Yasunobu; Yoshida, Hiroyuki
Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 7 Pages, 2024/11
We have developed the JAEA Advances Multi-Physics Analysis platform for Nuclear systems (JAMPAN) to realize high-fidelity neutronics/thermal-hydraulics coupling simulations. We will perform MVP/JUPITER coupling simulation for a single BWR fuel assembly in order to confirm that the neutronics/thermal-hydraulics coupling through JAMPAN is feasible. This presentation explains how to send and receive data between MVP and JUPITER through JAMPAN and simulation results.
Iwamoto, Osamu; Iwamoto, Nobuyuki; Tada, Kenichi; Katabuchi, Tatsuya*
Kaku Deta Nyusu (Internet), (139), p.1 - 7, 2024/10
no abstracts in English
Tada, Kenichi; Yamamoto, Akio*; Kunieda, Satoshi; Konno, Chikara; Kondo, Ryoichi; Endo, Tomohiro*; Chiba, Go*; Ono, Michitaka*; Tojo, Masayuki*
Journal of Nuclear Science and Technology, 61(6), p.830 - 839, 2024/06
Times Cited Count:6 Percentile:84.10(Nuclear Science & Technology)Nuclear data processing code is important to connect evaluated nuclear data libraries and radiation transport codes. The nuclear data processing code FRENDY version 1 was released in 2019 to generate ACE formatted cross section files with simple input data. After we released FRENDY version 1, many functions were developed, e.g., neutron multi-group cross section generation, explicit consideration of the resonance interference effect among different nuclides in a material, consideration of the resonance upscattering, ACE file perturbation, and modification of ENDF-6 formatted file. FRENDY version 2 was released including these new functions. It generates GENDF and MATXS formatted neutron multi-group cross section files from an ACE formatted cross section file or an evaluated nuclear data file. This paper explains the features of the new functions implemented in FRENDY version 2 and the verification of the neutron multigroup cross section generation function of this code.
Tada, Kenichi
Robutsuri No Kenkyu (Internet), (77), 6 Pages, 2024/06
The author participated in the international conference on reactor physics (Physor2024) held in San Francisco, U.S.A. from April 21 to 24, 2024. This article shows the overview of two workshops, i.e., the demonstration of the multi-physics platform Kraken at VTT and MOOSE at INL, the overview of two sections, i.e., "Data Methods, Code Validation" and "Multi-Physics Reactor Simulations and Validation", and the author's impressions of the conference.
Harada, Yoshinari*; Yamaguchi, Hibiki*; Endo, Tomohiro*; Yamamoto, Akio*; Tada, Kenichi
Transactions of the American Nuclear Society, 130(1), p.758 - 762, 2024/06
The data assimilation was performed using deterministic sampling to selectively reduce uncertainties caused by the thermal neutron scattering in light water. The prompt neutron decay constant of the water tank system was used for the data assimilation. The deterministic sampling method was applied to uncertainty quantification and data assimilation for light water thermal neutron scattering law data obtained by the CAB model. The uncertainty quantification results using the deterministic sampling method were comparable to those using the random sampling method.
Tada, Kenichi; Kondo, Ryoichi; Kamiya, Tomohiro; Nagatake, Taku; Ono, Ayako; Nagaya, Yasunobu; Yoshida, Hiroyuki
Proceedings of International Conference on Physics of Reactors (PHYSOR 2024) (Internet), p.1488 - 1497, 2024/04
JAEA has developed a new high-fidelity multi-physics platform JAMPAN for connecting single-physics codes such as a neutronics code and a thermal-hydraulics code. It consists of the HDF5 formatted data container and input and output data handler modules to generate the input file and read the output file of the single-physics code. Users can easily add or exchange the code by implementing input and output data handler modules for this code. The first target of JAMPAN is the coupling of neutronics and thermal-hydraulics calculations to provide reference results of core analysis codes. The current version of JAMPAN couples the neutronics code MVP and the thermal-hydraulics codes JUPITER, ACE-3D, and NASCA. Users can select the thermal-hydraulics code depending on the scale of problems to be solved, computational performance, and so on. This presentation explains the overview of JAMPAN and shows the results of the neutronics and thermal-hydraulics coupling calculation.
Tada, Kenichi; Nagaya, Yasunobu; Taninaka, Hiroshi; Yokoyama, Kenji; Okita, Shoichiro; Oizumi, Akito; Fukushima, Masahiro; Nakayama, Shinsuke
Journal of Nuclear Science and Technology, 61(1), p.2 - 22, 2024/01
Times Cited Count:10 Percentile:96.64(Nuclear Science & Technology)The new version of the Japanese evaluated nuclear data library, JENDL-5, was released in December 2021. This paper demonstrates the validation of JENDL-5 for fission reactor applications. Benchmark calculations are performed with the continuous-energy Monte Carlo codes MVP and MCNP and the deterministic code system MARBLE. The benchmark calculation results indicate that the performance of JENDL-5 for fission reactor applications is better than that of the former library JENDL-4.0.
Watanabe, Tomoaki; Tada, Kenichi; Endo, Tomohiro*; Yamamoto, Akio*
Journal of Nuclear Science and Technology, 60(11), p.1386 - 1396, 2023/11
Times Cited Count:3 Percentile:67.98(Nuclear Science & Technology)The burnup calculations for estimating the nuclide composition of the spent fuel are highly dependent on nuclear data. Many nuclides in the latest version of the Japanese Evaluated Nuclear Data Library JENDL-5 were modified from JENDL-4.0 and the modification affects the burnup calculations. This study confirmed the validity of JENDL-5 in the burnup calculations. The PIE data of Takahama-3 was used for the validation. The effect of modifications of the parameters, e.g., cross sections and fission yields, from JENDL-4.0 to JENDL-5 on the nuclide compositions was quantitatively investigated. The calculation results showed that JENDL-5 has a similar performance to JENDL-4.0. The calculation results also revealed that the modifications of the cross sections of actinide nuclides, fission yields, and thermal scattering low data of hydrogen in HO affected the nuclide compositions of PWR spent fuels.
Tada, Kenichi; Endo, Tomohiro*
Journal of Nuclear Science and Technology, 60(11), p.1397 - 1405, 2023/11
Times Cited Count:1 Percentile:30.19(Nuclear Science & Technology)The probability table method is a well-known method for addressing self-shielding effects in the unresolved resonance region. A long computational time is required to generate the probability table. The effective way to reduce the generation time of the probability table is the reduction of the number of ladders. The purpose of this study is the estimation of the optimal number of ladders using the statistical uncertainty in the probability table. To this end, the statistical uncertainty quantification method of the probability table was developed and the convergence behavior of the statistical uncertainty was investigated. The product of the probability table and the average cross section was considered the target of the statistical uncertainty. The convergence rate was affected by the average level spacing and reduced neutron width. The generation time of the probability table was less than half when the input parameter was changed from the number of ladders to the tolerance value.
Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Tada, Kenichi; Yokoyama, Kenji
Kaku Deta Nyusu (Internet), (136), 6 Pages, 2023/10
no abstracts in English
Tada, Kenichi
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 8 Pages, 2023/10
The number of energy grids of the thermal neutron scattering law data has a large impact on the data size of a cross section file of continuous energy Monte Carlo calculation codes. The optimization of the number of energy grids is an effective way to reduce the data size. This study developed the linearization method of the thermal neutron scattering cross section to optimize the number of energy grids and the linearization function was implemented in the nuclear data processing code FRENDY. The linearization process which is used in the resonance reconstruction and the Doppler broadening was adopted. The criticality benchmarks which use ZrH as the moderator were calculated to estimate the impact of the difference of the energy grids on neutronics calculations. The calculation results indicate that the linearization of the thermal neutron scattering cross section improves the prediction accuracy of neutronics calculations.
Watanabe, Tomoaki; Tada, Kenichi; Endo, Tomohiro*; Yamamoto, Akio*
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 10 Pages, 2023/10
The latest Japanese nuclear data library, JENDL-5, was released in December 2021. In JENDL-5, nuclear reaction cross sections for Gd-155 and Gd-157 were modified in addition to many heavy nuclides such as U-235. Fission yields and decay data, which are essential to characterize burnup fuels, were completely revised. This study investigated the effects of the nuclear data revisions from JENDL-4.0 to JENDL-5 on the neutronic characteristics of burnup fuels to validate JENDL-5. Burnup calculations of the 9x9 STEP-3 BWR fuel assembly based on the OECD/NEA Phase III-C benchmark were performed using JENDL-4.0 and JENDL-5. As a result, the k for JENDL-5 was smaller than that of JENDL-4.0 throughout the burnup, with a large difference of about 600 pcm at 12 GWd/t, around the peak of the k
. Above 20 GWd/t, the difference in k
increases with increasing burnup value, reaching nearly 600 pcm at 50 GWd/t. In addition, this study investigates which nuclear data contribute significantly to the difference in k
by performing burnup calculations with replacing nuclear data of individual nuclides from JENDL-4.0 to JENDL-5.
Tada, Kenichi; Kondo, Ryoichi; Endo, Tomohiro*; Yamamoto, Akio*
Journal of Nuclear Science and Technology, 60(6), p.624 - 631, 2023/06
Times Cited Count:7 Percentile:71.68(Nuclear Science & Technology)The sensitivity analysis and the uncertainty quantification have an important role in improving the evaluated nuclear data library. The current computational performance enables us to the sensitivity analysis and uncertainty quantification using the continuous energy Monte Carlo calculation code. The ACE file perturbation tool was developed for these calculations using modules of FRENDY. This tool perturbs the microscopic cross section, the number of neutrons per fission, and the fission spectrum. The uncertainty quantification using the random sampling method is also available if the user prepares the covariance matrix. The uncertainty of the k-effective using the perturbation tool was compared to the current sensitivity analysis codes SCALE/TSUNAMI and MCNP/KSEN. The comparison results indicated that the random sampling method using this tool accurately estimates the uncertainty of k-effective.
Tada, Kenichi
Kaku Deta Nyusu (Internet), (135), p.1 - 10, 2023/06
This article summarizes presentations at the IAEA technical meeting on nuclear data processing. In this technical meeting, the current development status of nuclear data processing codes and comparisons of the processing results using these codes were presented.
Tada, Kenichi; Endo, Tomohiro*
EPJ Web of Conferences, 284, p.14013_1 - 14013_4, 2023/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The self-shielding effect in the unresolved resonance region has a large impact on the fast- and intermediate-spectrum reactors. The probability table method is widely used for continuous-energy Monte Carlo calculation codes to treat the effect. In this method, a table provides the probability distribution of the cross-section for a nuclide in the given energy grid points. The table is generated by averaging with a lot of "ladders" which represent pseudo resonance structures. Though many nuclear data processing codes require the number of ladders as an input parameter to generate the probability table, an optimal number of ladders has not been investigated. Our previous study revealed that the suitable number of ladders depends on the nuclide and its resonance parameters. This result indicates that it is very difficult for users to find the optimal number of ladders. We developed the calculation method of the statistical uncertainty for the probability table generation.
Iwamoto, Osamu; Iwamoto, Nobuyuki; Kunieda, Satoshi; Minato, Futoshi; Nakayama, Shinsuke; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Nagaya, Yasunobu; Tada, Kenichi; et al.
EPJ Web of Conferences, 284, p.14001_1 - 14001_7, 2023/05
Times Cited Count:2 Percentile:87.21(Nuclear Science & Technology)Tada, Kenichi
Robutsuri No Kenkyu (Internet), (75), 13 Pages, 2023/03
In addition to nuclear data processing, FRENDY has various functions such as editing nuclear data and plotting cross section data. This document introduces these functions.