Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 68

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of neutron production cross sections from heavy ion induced reaction

Shigyo, Nobuhiro*; Uozumi, Yusuke*; Imabayashi, Yoichi*; Itashiki, Yutaro*; Satoh, Daiki; Kajimoto, Tsuyoshi*; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; Matsufuji, Naruhiro*; et al.

JAEA-Conf 2014-002, p.81 - 87, 2015/02

Cancer therapy using heavy ion beam has been adopted as highly advanced medical treatment by reason of its clinical advantages. It has become more important to estimate the risk of secondary cancer from recent survey. During treatment, secondary particles such as neutrons and -rays are producedby heavy ion induced nuclear reactions in a patient body as well as beam delivery apparatuses. For the risk assessment of secondary cancer, it is essential to know contribution of secondary neutrons by extra dose to organs in the vicinity of the irradiated tumor because the secondary neutron has a long flight path length and gives undesired dose to normal tissues in a wide volume. The experimental data of neutron energy spectra are required for dose estimations with high accuracy. Especially, precise data around neutron energy of 1 MeV is required because neutron of the energy region has a large relative biological eectiveness. Estimation of the secondary neutron yield data is important for estimation of radiation safety on both of workers and public in treatment facilities.

Journal Articles

Radial dependence of lineal energy distribution of 290-MeV/u carbon and 500-MeV/u iron ion beams using a wall-less tissue-equivalent proportional counter

Tsuda, Shuichi; Sato, Tatsuhiko; Watanabe, Ritsuko; Takada, Masashi*

Journal of Radiation Research, 56(1), p.197 - 204, 2015/01

 Times Cited Count:2 Percentile:75.84(Biology)

Radial dependence of lineal energy distribution, yf(y), have been experimentally evaluated for a 0.72 micrometer site in tissue using 290 MeV/u carbon and 500 MeV/u iron ion beams using a wall-less tissue equivalent proportional counter. The yf(y) distributions and dose-mean of y, are compared with the calculation by a track structure simulation code TRACION and a microdosimetric function of the PHITS code. The values of the measured agree with those of the calculation within 20% but differences in the shape of yf(y) were found in the case of the iron ion irradiation. The result indicates that further improvement of the calculation model for yf(y) distribution in PHITS is needed in terms of the analytical function that reproduce energy deposition by delta rays, in the case that primary ions have LET more than a few hundred keV/micrometer.

Journal Articles

Measurement of 100- and 290-MeV/A carbon incident neutron production cross sections for carbon, nitrogen and oxygen

Shigyo, Nobuhiro*; Uozumi, Yusuke*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Mizuno, Takafumi*; Takamiya, Masanori*; Hashiguchi, Taro*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; et al.

Nuclear Data Sheets, 119, p.303 - 306, 2014/05

 Percentile:100(Physics, Nuclear)

Heavy ion cancer therapy has been increased by reason of its clinical advantages. During the treatment, the secondary particles such as neutron and $$gamma$$-ray are produced by nuclear reactions of a heavy ion incidence on a nucleus in a patient body. Estimation of the secondary neutrons yields data is essential for assessment of radiation safety on both of workers and public in treatment facilities. We have measured the neutron yields from carbon ion incidence on carbon, nitrogen and oxygen targets in wide angular range from 15$$^{circ}$$ to 90$$^{circ}$$ with 100- and 290-MeV/u.

Journal Articles

Measurement of neutron yields from a water phantom bombarded by 290 MeV/u carbon ions

Shigyo, Nobuhiro*; Uozumi, Yusuke*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Hirabayashi, Keiichi*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; Matsufuji, Naruhiro*

Progress in Nuclear Science and Technology (Internet), 4, p.709 - 712, 2014/04

Heavy ion cancer therapy has been increased by reason of its clinical advantages. During the treatment, the secondary particles such as neutron and $$gamma$$-ray are produced by nuclear reactions of a heavy ion incidence on a nucleus in a patient body. Estimation of the secondary neutrons yields data is essential for assessment of radiation safety on both of workers and public in treatment facilities. Neutron energy spectra from a water phantom simulating the patient body were obtained at GSI only for forward directions. We measured the neutron yields from carbon ion incident on a water phantom in wide angular range from 15$$^{circ}$$ to 90$$^{circ}$$ with the therapeutic ion energy.

Journal Articles

Measurement of 100 MeV/u carbon incident neutron production cross sections on a carbon target

Shigyo, Nobuhiro*; Uozumi, Yusuke*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Mizuno, Takafumi*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; Matsufuji, Naruhiro*

JAEA-Conf 2013-002, p.137 - 142, 2013/10

Heavy ion cancer therapy has been increased by reason of its clinical advantages. During the treatment, the secondary particles such as neutron and $$gamma$$-ray are produced by nuclear reactions of a heavy ion incidence on a nucleus in a patient body. Estimation of double differential cross sections of secondary neutron is important to risk assessment of extra dose to organs in the vicinity of the irradiated tumor. Accurate data in neutron energy around 1 MeV is required because neutron in the energy region has large relative biological effectiveness. Neutron double differential cross sections by inducing 290 MeV/u carbon ion to bio-elements have been obtained experimentally. In order to have knowledge of neutron production by deceleration carbon in a human body, we measured the neutron yields from carbon ion incidence on a carbon target of neutron energy below 1 MeV in wide angular range from 15$$^{circ}$$ to 90$$^{circ}$$ with 100 MeV/u.

Journal Articles

Measurement of neutron- and photon-production cross sections from heavy-ion reactions on tissue equivalent elements

Uozumi, Yusuke*; Shigyo, Nobuhiro*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Mizuno, Takafumi*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; Matsufuji, Naruhiro*; et al.

HIMAC-140, p.234 - 235, 2013/08

In the heavy-ion radiotherapy, considerable discussion has been attracted regarding the potential for second cancer induction by secondary neutrons produced from the primary heavy-ion fragmentation. We have started new measurements at 100 MeV/u to investigate the neutron production by heavy ions decelerating in a patient body.

Journal Articles

Measurement of deposit energy distribution of heavy ions using a wall-less tissue equivalent proportional counter

Tsuda, Shuichi; Sato, Tatsuhiko; Satoh, Daiki; Takada, Masashi*

HIMAC-138, p.225 - 226, 2012/08

Radial dose distribution for 290 MeV/u carbon and 500 MeV/u iron ions were measured. It is found experimentally that radial dose distributions depend on the distance from the incident beam trajectory.

Journal Articles

Measurements of neutron- and photon-production cross sections from heavy-ion reactions on tissue equivalent elements

Uozumi, Yusuke*; Shigyo, Nobuhiro*; Kajimoto, Tsuyoshi*; Hirabayashi, Keiichi*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; et al.

HIMAC-138, p.237 - 238, 2012/08

In the heavy-ion radiotherapy, considerable discussion has been attracted regarding the potential for second cancer induction by secondary neutrons produced from the primary heavy-ion fragmentation. It is important to measure energy-angle double-differential cross sections (DDXs) of neutron- and photon-productions in heavy-ion nuclear reactions. Since it is notoriously hard to measure the spectral cross sections of neutrons in an energy range of around 1 MeV where the RBE value reaches at its maximum. In the project by last year, experiments were carried out at the synchrotron HIMAC of NIRS, Japan. The beams were $$^{12}$$C and $$^{16}$$O of 290 MeV/u and bombarded a carbon target. In measurements of neutrons and photons were used liquid scintillator detectors of 5" and 2". We have succeeded to lower the neutron energy threshold down to 0.6 MeV. The present results for neutron productions are in reasonable agreements with PHITS. Since our goal in technical aspects has been fulfilled, measurements will be continued for other reactions.

Journal Articles

Systematic measurement of lineal energy distributions for proton, He and Si ion beams over a wide energy range using a wall-less tissue equivalent proportional counter

Tsuda, Shuichi; Sato, Tatsuhiko; Takahashi, Fumiaki; Satoh, Daiki; Sasaki, Shinichi*; Namito, Yoshihito*; Iwase, Hiroshi*; Ban, Shuichi*; Takada, Masashi*

Journal of Radiation Research, 53(2), p.264 - 271, 2012/04

 Times Cited Count:7 Percentile:48.15(Biology)

Deposit energy distribution in microscopic site is basic information for understanding of biological effects of energetic heavy ion beams. To estimate RBE, lineal energy, $$y$$, can be an appropriate physical index. In this work, a wall-less tissue equivalent proportional counter has been designed and used for the measurement of $$y$$ distributions, $$y$$$$f$$($$y$$), for 160 MeV H, 150 MeV/u He, 290 MeV/u C, 490 MeV/u Si and 500 MeV/u Ar. Data of $$y$$$$f$$($$y$$) were also obtained in the wide range of LET. The dose-means of $$y$$, $$overline{y}$$$$_{D}$$, were compared with those calculated by the microdosimetric function of PHITS. It is found that the calculated $$y$$$$f$$($$y$$) and $$overline{y}$$$$_{D}$$ agree fairly well with those measured. The values of $$overline{y}$$$$_{D}$$ are larger than those of LET less than $$sim$$10 keV/$$mu$$m because of the discrete energy deposition by delta rays, while the relation is reversed above 10 keV/$$mu$$m. The results indicate that care should be taken in the difference between $$overline{y}$$$$_{D}$$ and LET when the values of RBE of energetic heavy ions are estimated.

Journal Articles

Measurement of lineal energy distribution of heavy ion using wall-less tissue equivalent proportional counter

Tsuda, Shuichi; Sato, Tatsuhiko; Takahashi, Fumiaki; Satoh, Daiki; Sasaki, Shinichi*; Namito, Yoshihito*; Iwase, Hiroshi*; Ban, Shuichi*; Takada, Masashi*

KEK Proceedings 2011-8, p.100 - 108, 2011/12

Deposit energy distribution in microscopic site is basic information for understanding of biological effects of energetic heavy ion beams. To estimate RBE, lineal energy, y, can be an appropriate physical index. In this work, a wall-less tissue equivalent proportional counter has been designed and used for the measurement of y distributions, $$yf(y)$$, for 160 MeV H, 150 MeV/u He and 490 MeV/u Si ion beams. Data of $$yf(y)$$ and the dose-means of $$y$$, $$overline{y}_D$$, were compared with those calculated by the microdosimetric function of PHITS. It is found that the calculated $$yf(y)$$ and $$overline{y}_D$$ agree fairly well with those measured, as well as the already reported result of 290 MeV/u carbon beam.

Journal Articles

Measurement of neutron- and photon-production cross sections from heavy-ion reactions on tissue equivalent elements

Uozumi, Yusuke*; Shigyo, Nobuhiro*; Kajimoto, Tsuyoshi*; Moriguchi, Daisuke*; Ueyama, Masahiko*; Yoshioka, Masakatsu*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; et al.

HIMAC-136, p.248 - 249, 2011/11

no abstracts in English

Journal Articles

Measurement of deposit energy distribution of heavy ions using a wall-less tissue equivalent proportional counter

Tsuda, Shuichi; Sato, Tatsuhiko; Satoh, Daiki; Takahashi, Fumiaki; Sasaki, Shinichi*; Namito, Yoshihito*; Sanami, Toshiya*; Saito, Kiwamu*; Takada, Masashi*

HIMAC-136, p.219 - 220, 2011/11

Measurements of lineal energy distribution were employed using 160 MeV proton and 490 MeV/u Si. The calculated $$yf(y)$$ by PHITS and $$overline{y}_D$$ agree fairly well with those measured. The LET dependence of $$overline{y}_D$$ was obtained from 3 to 300 keV/um in this project.

Journal Articles

Evaluation of dose rate reduction in a spacecraft compartment due to additional water shield

Sato, Tatsuhiko; Niita, Koji*; Shurshakov, V. A.*; Yarmanova, E. N.*; Nikolaev, I. V.*; Iwase, Hiroshi*; Sihver, L.*; Mancusi, D.*; Endo, Akira; Matsuda, Norihiro; et al.

Cosmic Research, 49(4), p.319 - 324, 2011/08

 Times Cited Count:6 Percentile:41.21(Engineering, Aerospace)

HZE particle transport codes are the indispensable tool in the shielding design of spacecrafts. We are therefore developing a general-purpose Monte Carlo code PHITS, which can deal with the transports of all kinds of hadrons and heavy ions with energies up to 200 GeV/n in 3-dimensional phase spaces. The applicability of PHITS to space researches has been well verified by comparing the neutron spectra in spacecrafts calculated by the code with the corresponding experimental data. Recently, PHITS was employed in the estimation of radiation fields in the Russian Service Module in ISS. The results of the estimation indicate that PHITS can reproduce experimental data of the dose reduction rates due to water shielding attached on the wall of the Russian crew cabin fairly well. The details of the calculation procedures will be given in the presentation, together with the results of other applications of PHITS to the space exploration.

Journal Articles

Neutron-production double-differential cross sections from heavy-ion interactions

Satoh, Daiki; Moriguchi, Daisuke*; Kajimoto, Tsuyoshi*; Koba, Yusuke*; Nakamura, Yasuhiro*; Shigyo, Nobuhiro*; Ueyama, Masahiko*; Uozumi, Yusuke*; Yoshioka, Masakatsu*; Matsufuji, Naruhiro*; et al.

Journal of the Korean Physical Society, 59(2), p.1741 - 1744, 2011/08

 Times Cited Count:3 Percentile:66.9(Physics, Multidisciplinary)

The data of neutron production from heavy-ion interactions are of great importance for the dose assessment in heavy-ion therapy. We have already evaluated the data of neutron production for thick targets, in which the incident heavy ions completely stop, by the measurements and the reevaluation of the existing data reported by Kurosawa et al. As a next step of the research, we plan to evaluate the neutron-production cross-section data for thin targets. These data are useful to understand the mechanism of heavy-ion interaction, and improve the reaction model in particle transport codes. The previously reported cross-section data by Iwata et al. were revised by using a new set of neutron-detection efficiency values calculated with SCINFUL-QMD code. While the original data gave the larger values than the predictions of particle transport codes above 200 MeV due to the underestimation of the efficiencies, it was improved by this revision. In addition, we have started the new cross-section measurements at HIMAC. All the data of neutron-production cross sections were compared with the predictions of particle transport codes.

Journal Articles

Measurement of neutron-production double-differential cross-sections on carbon bombarded with 290-MeV/nucleon carbon and oxygen ions

Satoh, Daiki; Moriguchi, Daisuke*; Kajimoto, Tsuyoshi*; Uehara, Haruhiko*; Shigyo, Nobuhiro*; Ueyama, Masahiko*; Yoshioka, Masakatsu*; Uozumi, Yusuke*; Sanami, Toshiya*; Koba, Yusuke*; et al.

Nuclear Instruments and Methods in Physics Research A, 644(1), p.59 - 67, 2011/07

 Times Cited Count:11 Percentile:24.46(Instruments & Instrumentation)

Neutron-production double-differential cross sections on carbon-carbon and oxygen-carbon reactions with incident heavy-ion energy of 290 MeV/nucleon were measured by time-of-flight method using liquid organic scintillators. By use of a detection system specialized for low-energy neutrons, the cross sections were obtained in a wide energy region from several hundred MeV down to 0.6 MeV for the oxygen-ion incidences. The experimental data were compared with the calculation results using the Monte-Carlo simulation code, PHITS. The PHITS results gave an overall agreement with the measured data within a factor of two.

JAEA Reports

Supplemental study on dose control for a criticality accident

Kanamori, Masashi; Suto, Toshiyuki; Tanaka, Kenichi*; Takada, Jun*

JAEA-Technology 2011-004, 12 Pages, 2011/03

JAEA-Technology-2011-004.pdf:0.97MB

In the previous report "A Study on Dose Control for JCO Criticality Accident Termination" (JAEA-Technology 2009-043), we discussed how to control the dose received during the termination work of the criticality accident. In this paper, we focused on the difference of the way in which dose rate attenuates between within 100 m from the source point and beyond 100 m and discussed the validity of using log-log plotting/semi-log plotting of dose rate - distance relation in order to extrapolate the dose rate at work place near the criticality accident point. In addition, we studied on the effect of the number of dose rate measurement data to be used for extrapolation. We recommend that about 10 mSv which is a half of 20 mSv annual dose limit should be used as worker's dose control target for the high neutron dose field work to ensure enough safety margin considering the following three points; (1) annual dose limit for workers, (2) dose received before, (3) measurement error.

Journal Articles

Study of neutron and photon production cross sections for second cancer risk assessment in heavy-ion therapy

Uozumi, Yusuke*; Iwamoto, Hiroki*; Koba, Yusuke*; Matsufuji, Naruhiro*; Sanami, Toshiya*; Satoh, Daiki; Shigyo, Nobuhiro*; Takada, Masashi*; Ueyama, Masahiko*; Yoshioka, Masakatsu*; et al.

Progress in Nuclear Science and Technology (Internet), 1, p.114 - 117, 2011/02

It is important to assess and suppress the potential for second cancer induction by secondary neutrons produced in primary heavy-ion fragmentation in patient body. Since it is very difficult to measure high-energy neutron doses in mixed radiation fields, a Monte-Carlo simulation approach has attracted much attention as an alternative for neutron dose estimation. It is notoriously hard to reproduce the spectral cross sections of neutrons from high-energy heavy-ion collisions. We, therefore, have planned experiments to measure energy-angle double-differential cross sections of nuclear reactions.

Journal Articles

Development of Cosmic Radiation and Energetic Particle Analyzing System: CREPAS

Yasuda, Hiroshi*; Yajima, Kazuaki*; Takada, Masashi*; Sato, Tatsuhiko; Nakamura, Takashi*

Progress in Nuclear Science and Technology (Internet), 1, p.356 - 359, 2011/02

It was verified that CREPAS can successfully measure cosmic-ray energetic neutrons ($$>$$ 10 MeV) separately from other components.

Journal Articles

Analysis of the effect of structural materials in a wall-less tissue-equivalent proportional counter irradiated by 290 MeV u$$^{-1}$$ carbon beam

Tsuda, Shuichi; Sato, Tatsuhiko; Takahashi, Fumiaki; Satoh, Daiki; Endo, Akira; Sasaki, Shinichi*; Namito, Yoshihito*; Iwase, Hiroshi*; Ban, Shuichi*; Takada, Masashi*

Radiation Protection Dosimetry, 143(2-4), p.450 - 454, 2011/02

 Times Cited Count:3 Percentile:66.23(Environmental Sciences)

A wall-less tissue equivalent proportional counter, wall-less TEPC, has been designed and used for the measurement of the y distributions for energetic heavy ions in order to verify a biological dose calculation model incorporated in the PHITS code. It is found that the dose-mean value of y obtained by the wall-less TEPC is 50 - 60% of the LET of the argon ions in water, since the delta-rays with relatively low y can be measured.

JAEA Reports

A Study on dose control for Tokaimura criticality accident termination

Kanamori, Masashi; Suto, Toshiyuki; Tanaka, Kenichi*; Takada, Jun*

JAEA-Technology 2010-042, 11 Pages, 2011/01

JAEA-Technology-2010-042.pdf:0.94MB

JAEA-Technology 2009-043 "A Study on dose control for JCO criticality accident termination", the dose we discuss how to manage termination of the criticality accident at work or (we refer as previously report) As a result, based on the measurements from around 40 m to 100 m, we made a re-evaluation of the dose. Reevaluated doses match with the degree of accuracy 60% to 80% compared with the respective individual dose. In this paper, we validate by these doses by using log-log plots and semi-log plots for the distance from the source approximately 100 m and further attenuation. As a result, if the field is under high doses of neutrons, dose constraint assessment should consider some points, by using 10 mSv, half of the annual limit 20 mSv, as dose reference, the work performed could safely be managed. And summaries the valid range of log-log plots for intense neutron dose estimation.

68 (Records 1-20 displayed on this page)