Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Hydrogen absorption mechanism into iron in aqueous solution including metal cations by laser ablation tests and first-principles calculations

Igarashi, Takahiro; Otani, Kyohei; Kato, Chiaki; Sakairi, Masatoshi*; Togashi, Yusuke*; Baba, Kazuhiko*; Takagi, Shusaku*

ISIJ International, 61(4), p.1085 - 1090, 2021/04

 Times Cited Count:0 Percentile:8.46(Metallurgy & Metallurgical Engineering)

In order to clarify the effect of metal cations (Zn$$^{2+}$$, Mg$$^{2+}$$, Na$$^{+}$$) in aqueous solution on hydrogen permeation into iron, the amount of hydrogen permeation from iron surface was measured by electrochemical tests with a laser ablation. Moreover, in order to obtain the basic mechanism of hydrogen permeation with metal cation, first-principles calculations were used to acquire the adsorption potential of the metal cation and the electronic state around iron surface. By Zn$$^{2+}$$ in solution, anodic reaction on ablated surface by laser irradiation was suppressed. Also, by quantum analysis Zn atoms were chemically bonded stronger than Na and Mg atoms to iron surface. It was suggested that the dissolution reaction of iron was suppressed by the formation of the Zn layer, and that lead suppression of hydrogen permeation into iron.

Journal Articles

Current status of the control system for J-PARC accelerator complex

Yoshikawa, Hiroshi; Sakaki, Hironao; Sako, Hiroyuki; Takahashi, Hiroki; Shen, G.; Kato, Yuko; Ito, Yuichi; Ikeda, Hiroshi*; Ishiyama, Tatsuya*; Tsuchiya, Hitoshi*; et al.

Proceedings of International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS '07) (CD-ROM), p.62 - 64, 2007/10

J-PARC is a large scale facility of the proton accelerators for the multi-purpose of scientific researches in Japan. This facility consists of three accelerators and three experimental stations. Now, J-PARC is under construction, and LINAC is operated for one year, 3GeV synchrotron has just started the commissioning in this October the 1st. The completion of this facility will be next summer. The control system of accelerators established fundamental performance for the initial commissioning. The most important requirement to the control system of this facility is to minimize the activation of accelerator devices. In this paper, we show that the performances of each layer of this control system have been achieved in the initial stage.

Journal Articles

Structural transformation on the pressure-induced metal-insulator transition in PrFe$$_{4}$$4P$$_{12}$$

Kawana, Daichi*; Kuwahara, Keitaro*; Sato, Masashi*; Takagi, Masatoshi*; Aoki, Yuji*; Kogi, Masafumi*; Sato, Hideyuki*; Sagayama, Hajime*; Osakabe, Toyotaka; Iwasa, Kazuaki*; et al.

Journal of the Physical Society of Japan, 75(11), p.113602_1 - 113602_4, 2006/11

 Times Cited Count:11 Percentile:56.36(Physics, Multidisciplinary)

We report the first X-ray diffraction experiments of PrFe$$_{4}$$P$$_{12}$$ under high pressure. We discovered a symmetry lowering from cubic to orthorhombic or lower at the metal-insulator transition temperature, accompanied by a jump in the lattice constant, which indicates a first-order phase transition. The superlattice reflections at q=(1,0,0) observed in the low-pressure nonmagnetic ordered phase are found to disappear in the insulating phase. The temperature dependence of the lattice constant and the absence of the superlattice reflections are well explained by taking into account an antiferromagnetic ordering.

Journal Articles

Research of disease onset mechanism by determining the distribution of intracellular trace elements using an in-air micro-PIXE analyzer system

Nakano, Takashi*; Arakawa, Kazuo; Sakurai, Hideyuki*; Hasegawa, Masatoshi*; Yuasa, Kazuhisa*; Saito, Etsuko*; Takagi, Hitoshi*; Nagamine, Takeaki*; Kusakabe, Takahiko*; Takada, Hisashi*; et al.

International Journal of PIXE, 16(1&2), p.69 - 76, 2006/00

A new program was started out to create a new medical scientific field, which is consisting of radiation oncology and nuclear medicine, utilizing the advanced accelerator and ion beam technology. An in-air micro-PIXE analyzer system, which is among the most important technical basis of the program, was upgraded to improve accuracy of elemental mapping for samples having thickness variation in a scope of microbeam scanning. In the program, on the other hand, in order to approach important bio-medical problems on cancer, intracellular dynamics of the trace elements according to mechanism of development of diseases were studied using this system. This paper outlines this program and shows the system upgraded, and results of preliminary studied about the problems.

Oral presentation

Feasibility study on material creation and new-type fuel utilization by using HTTR, 1; Outline of feasibility study

Katayama, Masaharu*; Takamatsu, Kuniyoshi; Sawa, Kazuhiro; Takagi, Naoyuki*; Ooka, Yasunori*; Yamasaki, Masatoshi*

no journal, , 

As collaborative research project by Japan Atomic Energy Agency, Toyota Tsusho Corporation and Nuclear Fuel Industries, Ltd., new utilizations of HTGR and new R&D of a cooperative relationship between car industries and HTGR are presented. Specifically, we showed the results of feasibility study on material creation and new-type fuel utilization by using HTTR.

Oral presentation

Feasibility Study on material creation and new-type fuel utilization by using HTTR, 5; Study on thorium fuel utilization

Ooka, Yasunori*; Tanaka, Hideki*; Yamasaki, Masatoshi*; Goto, Minoru; Ueta, Shohei; Takagi, Naoyuki*; Katayama, Masaharu*

no journal, , 

The usage of thorium as nuclear fuel has been focused, which is produced with mining rare metal. The study on thorium fuel utilization is conducted for high temperature gas-cooled reactor (HTGR). We reported about the evaluations on the nuclear characteristics and on manufacturing of the thorium fuel for irradiation test using the High Temperature engineering Test Reactor (HTTR).

Oral presentation

Feasibility Study on material development and new-type fuel utilization by using HTTR, 4; Feasibility study on development of irradiation capsule and irradiation method

Shinohara, Masanori; Shibata, Taiju; Katayama, Masaharu*; Takagi, Naoyuki*; Ooka, Yasunori*; Yamasaki, Masatoshi*

no journal, , 

no abstracts in English

Oral presentation

Feasibility study on a wide-variety of fuel utilization by using HTTR, 3; Nuclear characteristics of thorium loaded core

Goto, Minoru; Ueta, Shohei; Katayama, Masaharu*; Takagi, Naoyuki*; Ooka, Yasunori*; Yamasaki, Masatoshi*

no journal, , 

To utilize thorium in a high temperature gas-cooled reactor (HTGR), calculation of its nuclear characteristics with high accuracy is important subject. Criticality, which is one of the important nuclear characteristics, was measured for thorium loaded core by using critical assemblies, and comparisons between the measurements and calculations were reported. While measurement of criticality of thorium loaded core using actual reactor is almost not published. This paper described about measurement of nuclear characteristics of thorium loaded core using a High Temperature Engineering Test Reactor (HTTR).

Oral presentation

Feasibility study on a wide-variety of fuel utilization by using HTTR, 1; Outline of feasibility study

Katayama, Masaharu*; Takamatsu, Kuniyoshi; Sawa, Kazuhiro; Takagi, Naoyuki*; Ooka, Yasunori*; Yamasaki, Masatoshi*

no journal, , 

no abstracts in English

Oral presentation

Feasibility study on a wide-variety of fuel utilization by using HTTR, 4; Study on thorium fuel utilization

Ueta, Shohei; Goto, Minoru; Katayama, Masaharu*; Takagi, Naoyuki*; Ooka, Yasunori*; Yamasaki, Masatoshi*

no journal, , 

For the feasibility study on a wide-variety of fuel utilization of the high temperature gas-cooled reactor (HTGR) in order to confirm the integrity and the irradiation performance of thorium as the fuel, the irradiation test with thorium-uranium mixed dioxide fuel (denoted as thorium fuel) by the High temperature engineering test reactor (HTTR) of Japan Atomic Energy Agency (JAEA) has been reviewed, and its neutronic characteristics has been evaluated. With regard to the license, the HTTR and the fuel fabrication plant of Nuclear Fuel Industries, Ltd. have been permitted to treat thorium as the fuel. During the irradiation, the integrity of the fuel specimen can be monitored continuously by the fuel failure detection (FFD) system installed in the HTTR. After the irradiation, the fuel sample is dismantled from the core and post-irradiation examinations are carried out to confirm the integrity and to evaluate the irradiance of the test fuel. The irradiance of the thorium fuel sample have been estimated in case of the irradiation test with three block of the thorium fuel in 4 of thorium to uranium mixed ratio and in 20% of enrichment of uranium-235. As the result, the burnup of the thorium fuel specimens will be approximately 21 GWd/t with 30 MW of reactor power in 660 days of the irradiation duration.

10 (Records 1-10 displayed on this page)
  • 1