Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yomogida, Takumi; Hashimoto, Tadashi; Okumura, Takuma*; Yamada, Shinya*; Tatsuno, Hideyuki*; Noda, Hirofumi*; Hayakawa, Ryota*; Okada, Shinji*; Takatori, Sayuri*; Isobe, Tadaaki*; et al.
Analyst, 149(10), p.2932 - 2941, 2024/03
Times Cited Count:1 Percentile:57.85(Chemistry, Analytical)In this study, we successfully applied a transition-edge sensor (TES) spectrometer as a detector for microbeam X-ray measurements from a synchrotron X-ray light source to determine uranium (U) distribution at the micro-scale and its chemical species in biotite obtained from the U mine. It is difficult to separate the fluorescent X-ray of the U L line at 13.615 keV from that of the Rb K
line at 13.395 keV in the X-ray fluorescence spectrum with an energy resolution of approximately 220 eV of the conventional silicon drift detector (SDD). Meanwhile, the fluorescent X-rays of U L
and Rb K
were fully separated by TES with 50 eV energy resolution at the energy of around 13 keV. The successful peak separation by TES led to an accurate mapping analysis of trace U in micro-X-ray fluorescence measurements and a decrease in the signal-to-background ratio in micro-X-ray absorption near edge structure spectroscopy.
Li, W.*; Yamada, Shinya*; Hashimoto, Tadashi; Okumura, Takuma*; Hayakawa, Ryota*; Nitta, Kiyofumi*; Sekizawa, Oki*; Suga, Hiroki*; Uruga, Tomoya*; Ichinohe, Yuto*; et al.
Analytica Chimica Acta, 1240, p.340755_1 - 340755_9, 2023/02
Times Cited Count:10 Percentile:70.66(Chemistry, Analytical)no abstracts in English
Miura, Hikaru*; Kuribara, Yuichi; Yamamoto, Masayoshi*; Sakaguchi, Aya*; Yamaguchi, Noriko*; Sekizawa, Oki*; Nitta, Kiyofumi*; Higaki, Shogo*; Tsumune, Daisuke*; Itai, Takaaki*; et al.
Scientific Reports (Internet), 10, p.11421_1 - 11421_9, 2020/07
Times Cited Count:20 Percentile:62.01(Multidisciplinary Sciences)Yomogida, Takumi; Yamada, Shinya*; Ichinohe, Yuto*; Sato, Toshiki*; Hayakawa, Ryota*; Okada, Shinji*; Toyama, Yuichi*; Hashimoto, Tadashi; Noda, Hirofumi*; Isobe, Tadaaki*; et al.
no journal, ,
The reduction of uranium on biotite was studied to obtain insight into the immobilization of uranium in the environment. The chemical species of uranium in biotite were studied using a superconducting transition edge sensor and an X-ray emission spectrometer to remove interference from rubidium in biotite. As a result, the speciation of uranium in biotite collected from former uranium deposits was possible. The XANES spectra of the biotite indicated that the uranium in the biotite was partially reduced.
Yomogida, Takumi; Yamada, Shinya*; Ichinohe, Yuto*; Sato, Toshiki*; Hayakawa, Ryota*; Okada, Shinji*; Toyama, Yuichi*; Hashimoto, Tadashi; Noda, Hirofumi*; Isobe, Tadaaki*; et al.
no journal, ,
Biotite is known as a host phase that retains uranium (U) in uranium deposits at Ningyo-Toge and Tono, and it is expected that the distribution of U in biotite will provide insight into the concentration and long-term immobilization of U. However, biotite contains rubidium (Rb), which interferes with X-ray fluorescence analysis, making it difficult to accurately determine the distribution of U-Rb in biotite by measurement using a conventional solid state detector (SSD). In this study, we developed a method to use a transition edge sensor (TES) as a detector in microbeam X-ray fluorescence analysis, which enables us to detect X-ray fluorescence with an energy resolution of about 20 eV and to obtain a Rb K line at 13.373 keV and a U L
line at 13.612 keV can be completely separated. Therefore,the developed method enables us to accurately determine the distribution of U-Rb in biotite.
Takahashi, Kiyofumi; Matsushima, Ryotatsu; Sato, Fuminori; Saito, Yasuo
no journal, ,
no abstracts in English
Matsushima, Ryotatsu; Takahashi, Kiyofumi; Saito, Yasuo; Kikuchi, Yukihiro*; Atarashi, Daiki*; Shirozu, Hidetomo
no journal, ,
Low Active Waste Treatment Development Facility (LWTF) is planning to solidify the cement waste liquid generated at the Tokai Reprocessing Facility. In the previous report, it has been shown that the carbonate waste liquid can be solidified by conducting a solidification test on the waste liquid simulating the carbonate waste liquid containing sodium carbonate and sodium nitrate. On the other hand, it is expected that sodium sulfate will coexist as a foreign substances in the carbonate waste liquid, even though it is a trace amount, and it has been confirmed that there is no effect of sodium sulfate coexists in beaker-scale test. In this report, a actual-scale test is carried out, confirm that there is no effect when sodium sulfate coexists, and the results is reported. It was confirmed that the presence or absence of sodium sulfate in the waste liquid had no effect on the fluidity of the sample after kneading, the compressive strength of the sample after curing, etc., and thus had no effect on the solidified body properties.