Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Application of transition-edge sensors for micro-X-ray fluorescence measurements and micro-X-ray absorption near edge structure spectroscopy; a case study of uranium speciation in biotite obtained from a uranium mine

Yomogida, Takumi; Hashimoto, Tadashi; Okumura, Takuma*; Yamada, Shinya*; Tatsuno, Hideyuki*; Noda, Hirofumi*; Hayakawa, Ryota*; Okada, Shinji*; Takatori, Sayuri*; Isobe, Tadaaki*; et al.

Analyst, 149(10), p.2932 - 2941, 2024/03

 Times Cited Count:1 Percentile:57.85(Chemistry, Analytical)

In this study, we successfully applied a transition-edge sensor (TES) spectrometer as a detector for microbeam X-ray measurements from a synchrotron X-ray light source to determine uranium (U) distribution at the micro-scale and its chemical species in biotite obtained from the U mine. It is difficult to separate the fluorescent X-ray of the U L$$alpha$$$$_{1}$$ line at 13.615 keV from that of the Rb K$$alpha$$ line at 13.395 keV in the X-ray fluorescence spectrum with an energy resolution of approximately 220 eV of the conventional silicon drift detector (SDD). Meanwhile, the fluorescent X-rays of U L$$alpha$$$$_{1}$$ and Rb K$$alpha$$ were fully separated by TES with 50 eV energy resolution at the energy of around 13 keV. The successful peak separation by TES led to an accurate mapping analysis of trace U in micro-X-ray fluorescence measurements and a decrease in the signal-to-background ratio in micro-X-ray absorption near edge structure spectroscopy.

Journal Articles

High-sensitive XANES analysis at Ce L$$_{2}$$-edge for Ce in bauxites using transition-edge sensors; Implications for Ti-rich geological samples

Li, W.*; Yamada, Shinya*; Hashimoto, Tadashi; Okumura, Takuma*; Hayakawa, Ryota*; Nitta, Kiyofumi*; Sekizawa, Oki*; Suga, Hiroki*; Uruga, Tomoya*; Ichinohe, Yuto*; et al.

Analytica Chimica Acta, 1240, p.340755_1 - 340755_9, 2023/02

 Times Cited Count:10 Percentile:70.66(Chemistry, Analytical)

no abstracts in English

Journal Articles

Characterization of two types of cesium-bearing microparticles emitted from the Fukushima accident via multiple synchrotron radiation analyses

Miura, Hikaru*; Kuribara, Yuichi; Yamamoto, Masayoshi*; Sakaguchi, Aya*; Yamaguchi, Noriko*; Sekizawa, Oki*; Nitta, Kiyofumi*; Higaki, Shogo*; Tsumune, Daisuke*; Itai, Takaaki*; et al.

Scientific Reports (Internet), 10, p.11421_1 - 11421_9, 2020/07

 Times Cited Count:20 Percentile:62.01(Multidisciplinary Sciences)

Oral presentation

Elucidation of the reduction of uranium in biotite by advanced X-ray spectroscopy

Yomogida, Takumi; Yamada, Shinya*; Ichinohe, Yuto*; Sato, Toshiki*; Hayakawa, Ryota*; Okada, Shinji*; Toyama, Yuichi*; Hashimoto, Tadashi; Noda, Hirofumi*; Isobe, Tadaaki*; et al.

no journal, , 

The reduction of uranium on biotite was studied to obtain insight into the immobilization of uranium in the environment. The chemical species of uranium in biotite were studied using a superconducting transition edge sensor and an X-ray emission spectrometer to remove interference from rubidium in biotite. As a result, the speciation of uranium in biotite collected from former uranium deposits was possible. The XANES spectra of the biotite indicated that the uranium in the biotite was partially reduced.

Oral presentation

Analysis of uranium in environmental samples by micro X-ray fluorescence spectroscopy using transition edge sensors

Yomogida, Takumi; Yamada, Shinya*; Ichinohe, Yuto*; Sato, Toshiki*; Hayakawa, Ryota*; Okada, Shinji*; Toyama, Yuichi*; Hashimoto, Tadashi; Noda, Hirofumi*; Isobe, Tadaaki*; et al.

no journal, , 

Biotite is known as a host phase that retains uranium (U) in uranium deposits at Ningyo-Toge and Tono, and it is expected that the distribution of U in biotite will provide insight into the concentration and long-term immobilization of U. However, biotite contains rubidium (Rb), which interferes with X-ray fluorescence analysis, making it difficult to accurately determine the distribution of U-Rb in biotite by measurement using a conventional solid state detector (SSD). In this study, we developed a method to use a transition edge sensor (TES) as a detector in microbeam X-ray fluorescence analysis, which enables us to detect X-ray fluorescence with an energy resolution of about 20 eV and to obtain a Rb K$$alpha$$ line at 13.373 keV and a U L$$alpha$$ line at 13.612 keV can be completely separated. Therefore,the developed method enables us to accurately determine the distribution of U-Rb in biotite.

Oral presentation

Development of treatment for low radioactive effluent in Tokai Reprocessing Plant, 24-2; Study on Cement Based Encapsulation of Sodium Carbonate Liquid Waste at full scale

Takahashi, Kiyofumi; Matsushima, Ryotatsu; Sato, Fuminori; Saito, Yasuo

no journal, , 

no abstracts in English

Oral presentation

Development of treatment for low radioactive waste in Tokai Reprocessing Plant, 28-2; Study on the effect of impurities present in waste liquid on cement solidification

Matsushima, Ryotatsu; Takahashi, Kiyofumi; Saito, Yasuo; Kikuchi, Yukihiro*; Atarashi, Daiki*; Shirozu, Hidetomo

no journal, , 

Low Active Waste Treatment Development Facility (LWTF) is planning to solidify the cement waste liquid generated at the Tokai Reprocessing Facility. In the previous report, it has been shown that the carbonate waste liquid can be solidified by conducting a solidification test on the waste liquid simulating the carbonate waste liquid containing sodium carbonate and sodium nitrate. On the other hand, it is expected that sodium sulfate will coexist as a foreign substances in the carbonate waste liquid, even though it is a trace amount, and it has been confirmed that there is no effect of sodium sulfate coexists in beaker-scale test. In this report, a actual-scale test is carried out, confirm that there is no effect when sodium sulfate coexists, and the results is reported. It was confirmed that the presence or absence of sodium sulfate in the waste liquid had no effect on the fluidity of the sample after kneading, the compressive strength of the sample after curing, etc., and thus had no effect on the solidified body properties.

7 (Records 1-7 displayed on this page)
  • 1