Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Toyoda, Shin*; Inoue, Kazuhiko*; Yamaguchi, Ichiro*; Hoshi, Masaharu*; Hirota, Seiko*; Oka, Toshitaka; Shimazaki, Tatsuya*; Mizuno, Hideyuki*; Tani, Atsushi*; Yasuda, Hiroshi*; et al.
Radiation Protection Dosimetry, 199(14), p.1557 - 1564, 2023/09
Interlaboratory comparison studies are important for radiation dosimetry in order to demonstrate how the technique is universally available. The set of standard samples are examined in each participating laboratory in the present study. After a set of standard samples together with the samples with unknown doses, which were prepared in the same laboratory as the standard samples, are measured at a participating laboratory, those samples are sent to another participating laboratory for next measurement. There is some small difference observed in the sensitivity (the slope of the dose response line) of the standard samples while the differences in the obtained doses for the samples with unknown doses are rather systematic, implying that the difference is mostly due to the samples but not to measurements.
Mitsuyasu, Yusuke*; Oka, Toshitaka; Takahashi, Atsushi*; Kino, Yasushi*; Okutsu, Kenichi*; Sekine, Tsutomu*; Yamashita, Takuma*; Shimizu, Yoshinaka*; Chiba, Mirei*; Suzuki, Toshihiko*; et al.
Radiation Protection Dosimetry, 199(14), p.1620 - 1625, 2023/09
We have been conducting dose assessments for Japanese macaques captured in Fukushima to reveal radiobiological effects on the low-dose expose animals. To accurately determine the external exposure dose, it is desirable to examine the analysis of the CO radical intensity. We examined ESR spectra of teeth of 10 macaques captured in Fukushima by two spectrum-decomposition algorithms.
Ohashi, Yusuke; Shimaike, Masamitsu; Matsumoto, Takashi; Takahashi, Nobuo; Yokoyama, Kaoru; Morimoto, Yasuyuki
Nuclear Technology, 209(5), p.777 - 786, 2023/05
Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)At the Ningyo-Toge Center, technical development related to uranium refining conversion and enrichment has been completed, and decommissioning of these facilities has begun. The error between the quantity of dismantled materials estimated from the facility design drawings and the actual quantity of dismantled materials was minimal when averaging over the entire Uranium Refining and Conversion Plant and Uranium Enrichment Engineering Facility, which results indicated that the preliminary estimate of the quantity of dismantled materials for decommissioning was reasonable. Most of the dismantled materials, which have no contamination history and are properly managed were able to be carried out to recyclers as non-radioactive waste (NR). In addition, the possibility of evaluating the uranium concentration of clearance level in dismantled objects was confirmed through gamma-ray measurement tests using mock-up waste.
Nakada, Akira; Kanai, Katsuta; Seya, Natsumi; Nishimura, Shusaku; Futagawa, Kazuo; Nemoto, Masashi; Tobita, Keiji; Yamada, Ryohei*; Uchiyama, Rei; Yamashita, Daichi; et al.
JAEA-Review 2022-078, 164 Pages, 2023/03
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2021 to March 2022. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.
Li, W.*; Yamada, Shinya*; Hashimoto, Tadashi; Okumura, Takuma*; Hayakawa, Ryota*; Nitta, Kiyofumi*; Sekizawa, Oki*; Suga, Hiroki*; Uruga, Tomoya*; Ichinohe, Yuto*; et al.
Analytica Chimica Acta, 1240, p.340755_1 - 340755_9, 2023/02
Times Cited Count:1 Percentile:42.63(Chemistry, Analytical)no abstracts in English
Zheng, X.*; Kato, Masaru*; Uemura, Yohei*; Matsumura, Daiju; Yagi, Ichizo*; Takahashi, Kiyonori*; Noro, Shinichiro*; Nakamura, Takayoshi*
Inorganic Chemistry, 62(3), p.1257 - 1263, 2023/01
Times Cited Count:0 Percentile:0.01(Chemistry, Inorganic & Nuclear)Kaburagi, Masaaki; Shimazoe, Kenji*; Terasaka, Yuta; Tomita, Hideki*; Yoshihashi, Sachiko*; Yamazaki, Atsushi*; Uritani, Akira*; Takahashi, Hiroyuki*
Nuclear Instruments and Methods in Physics Research A, 1046, p.167636_1 - 167636_8, 2023/01
We focus on the thickness and property controls of inorganic scintillators used for thermal neutron detection in intense -ray fields without considering pulse shape discrimination techniques. GS20
(a lithium glass) and LiCaAlF
:Ce(LiCAF:Ce) cintillators with thicknesses of 0.5 and 1.0 mm, respectively, have been employed. Pulse signals generated by photomultiplier tubes, to which the scintillators were coupled, were inserted into a digital pulse processing unit with 1 Gsps, and the areas of waveforms were integrated for 360 ns. In a
Co
-ray field, the neutron detection for GS20
with a 0.5-mm thickness was possible at dose rates of up to 0.919 Gy/h; however, for LiCAF:Ce, neutron detection was possible at 0.473 Gy/h, and it failed at 0.709 Gy/h. Threfore, in a
Co
-ray field, the neutron/
-ray discrimination of GS20
was better than that of LiCAF:Ce due to its better energy resolution and higher detection efficiency.
Yogo, Akifumi*; Lan, Z.*; Arikawa, Yasunobu*; Abe, Yuki*; Mirfayzi, S. R.*; Wei, T.*; Mori, Takato*; Golovin, D.*; Hayakawa, Takehito*; Iwata, Natsumi*; et al.
Physical Review X, 13(1), p.011011_1 - 011011_12, 2023/01
Times Cited Count:1 Percentile:94.54(Physics, Multidisciplinary)Endo, Shunsuke; Okudaira, Takuya*; Abe, Ryota*; Fujioka, Hiroyuki*; Hirota, Katsuya*; Kimura, Atsushi; Kitaguchi, Masaaki*; Oku, Takayuki; Sakai, Kenji; Shima, Tatsushi*; et al.
Physical Review C, 106(6), p.064601_1 - 064601_7, 2022/12
Times Cited Count:1 Percentile:39.66(Physics, Nuclear)no abstracts in English
Yoshimune, Wataru*; Kikkawa, Nobuaki*; Yoneyama, Hiroaki*; Takahashi, Naoko*; Minami, Saori*; Akimoto, Yusuke*; Mitsuoka, Takuya*; Kawaura, Hiroyuki*; Harada, Masashi*; Yamada, Norifumi*; et al.
ACS Applied Materials & Interfaces, 14(48), p.53744 - 53754, 2022/11
Mitsuyasu, Yusuke*; Oka, Toshitaka; Takahashi, Atsushi*; Kino, Yasushi*; Okutsu, Kenichi*; Sekine, Tsutomu*; Yamashita, Takuma*; Shimizu, Yoshinaka*; Chiba, Mirei*; Suzuki, Toshihiko*; et al.
KEK Proceedings 2022-2, p.120 - 125, 2022/11
We investigate the effect of sample's anisotropy and measurement condition to obtain the higher reproducibility for the shape of the ESR spectrum and the intensity of CO radical.
Ishikawa, Ryoya*; Suzuki, Masatoshi*; Kino, Yasushi*; Endo, Satoru*; Nakajima, Hiroo*; Oka, Toshitaka; Takahashi, Atsushi*; Shimizu, Yoshinaka*; Suzuki, Toshihiko*; Shinoda, Hisashi*; et al.
KEK Proceedings 2022-2, p.61 - 66, 2022/11
The balance between oxidative stress and antioxidant activity, which is a defense mechanism against oxidative stress, was investigated in the liver and bladder of wild Japanese macaques captured in Fukushima Prefecture. No significant induction of oxidative stress by exposure to environmental radionuclides after the Fukushima nuclear accident was observed, suggesting that the stress defense mechanism of the organism is activated in some organs.
Kureta, Masatoshi; Yamagata, Yoji*; Miyakoshi, Ken*; Mashii, Tatsuya*; Miura, Yoshiaki*; Takahashi, Kazunori*
JAEA-Research 2022-007, 28 Pages, 2022/09
To enhance energy separation in a counter-current Ranque-Hilsch vortex tube, a newly designed hollow helical fin was inserted into the hot tube of the vortex tube. In this study, the effect of the fin on the energy separation was investigated using three types of the vortex tube, and then computational fluid dynamics (CFD) simulation has been conducted to understand the experimental results and discuss the flow structure in the vortex tube with the hollow helical fin. As a result, it was found from the experimental data that the fin effectively enhanced energy separation, and that the tube length could be shorten. When the inlet air pressure was 0.5 MPa, the maximum temperature difference from the inlet to the cold exit was 62.2C. The CFD code employing the Reynolds Stress Model (RSM) turbulence model was used to analyze the fluid dynamics in the vortex tube. As a result, it was confirmed that the temperature, velocity, and pressure distributions changed significantly at the stagnation point, and that the distributions in the tube with the fin were completely different from those without the fin. It was thought that a strong reversing helical vortex flow with small recirculating vortex structure formed between the fin end and the stagnation point on the cold exit side would enhance energy separation in the vortex tube with the hollow helical fin.
Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.
Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09
Times Cited Count:3 Percentile:85.55(Nuclear Science & Technology)In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.
Takahashi, Masa
NL Dayori, (537), p.2 - 3, 2022/09
no abstracts in English
Kaburagi, Masaaki; Shimazoe, Kenji*; Kato, Masahiro*; Kurosawa, Tadahiro*; Takahashi, Hiroyuki*
Journal of Nuclear Science and Technology, 59(8), p.983 - 992, 2022/08
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Takahashi, Masa
NL Dayori, (536), p.2 - 3, 2022/08
no abstracts in English
Yamaguchi, Akiko; Nagata, Kojiro*; Kobayashi, Keita; Tanaka, Kazuya; Kobayashi, Toru; Tanida, Hajime; Shimojo, Kojiro; Sekiguchi, Tetsuhiro; Kaneta, Yui; Matsuda, Shohei; et al.
iScience (Internet), 25(8), p.104763_1 - 104763_12, 2022/08
Times Cited Count:3 Percentile:45.22(Multidisciplinary Sciences)no abstracts in English
Fukaya, Yuji; Okita, Shoichiro; Kanda, Shun*; Goto, Masaki*; Nakajima, Kunihiro*; Sakon, Atsushi*; Sano, Tadafumi*; Hashimoto, Kengo*; Takahashi, Yoshiyuki*; Unesaki, Hironobu*
KURNS Progress Report 2021, P. 101, 2022/07
The Japan Atomic Energy Agency (JAEA) started the Research and Development (R&D) to improve nuclear prediction techniques for High Temperature Gas-cooled Reactors (HTGRs) in 2018. The objectives are to intro-duce the generalized bias factor method to avoid full mock-up experiment for the first commercial HTGR and to improve neutron instrumentation system by virtue of the particular characteristics due to a graphite moderation system. For this end, we composed B7/4"G2/8"p8EU(3)+3/8"p38EU in the B-rack of Kyoto University Critical Assembly (KUCA) in 2021.
Yamaguchi, Akiko; Nagata, Kojiro*; Tanaka, Kazuya; Kobayashi, Keita; Kobayashi, Toru; Shimojo, Kojiro; Tanida, Hajime; Sekiguchi, Tetsuhiro; Kaneta, Yui; Matsuda, Shohei; et al.
Hosha Kagaku, (45), p.28 - 30, 2022/03
no abstracts in English