Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 252

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluation of thermal strain induced in components of Nb$$_{3}$$Sn strand during cooling

Suwa, Tomone*; Hemmi, Tsutomu*; Saito, Toru*; Takahashi, Yoshikazu*; Koizumi, Norikiyo*; Luzin, V.*; Suzuki, Hiroshi; Harjo, S.

IEEE Transactions on Applied Superconductivity, 28(3), p.6001104_1 - 6001104_4, 2018/04

 Times Cited Count:1 Percentile:7.59(Engineering, Electrical & Electronic)

Journal Articles

Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector

Okumura, Yoshikazu; Gobin, R.*; Knaster, J.*; Heidinger, R.*; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; et al.

Review of Scientific Instruments, 87(2), p.02A739_1 - 02A739_3, 2016/02

 Times Cited Count:7 Percentile:35.23(Instruments & Instrumentation)

IFMIF is an accelerator based neutron facility having two set of linear accelerators each producing 125mA/CW deuterium ion beams (250mA in total) at 40MeV. The LIPAc (Linear IFMIF Prototype Accelerator) being developed in the IFMIF-EVEDA project consists of an injector, a RFQ accelerator, and a part of superconducting Linac, whose target is to demonstrate 125mA/CW deuterium ion beam acceleration up to 9MeV. The injector has been developed in CEA Saclay and already demonstrated 140mA/100keV deuterium beam. The injector was disassembled and delivered to the International Fusion Energy Research Center (IFERC) in Rokkasho, Japan, and the commissioning has started after its reassembly 2014; the first beam production has been achieved in November 2014. Up to now, 100keV/120mA/CW hydrogen ion beam has been produced with a low beam emittance of 0.2 $$pi$$.mm.mrad (rms, normalized).

Journal Articles

Measurement of ion species in high current ECR H$$^+$$/D$$^+$$ ion source for IFMIF (International Fusion Materials Irradiation Facility)

Shinto, Katsuhiro; Sen$'e$e, F.*; Ayala, J.-M.*; Bolzon, B.*; Chauvin, N.*; Gobin, R.*; Ichimiya, Ryo; Ihara, Akira; Ikeda, Yukiharu; Kasugai, Atsushi; et al.

Review of Scientific Instruments, 87(2), p.02A727_1 - 02A727_3, 2016/02

 Times Cited Count:8 Percentile:39.15(Instruments & Instrumentation)

Journal Articles

Present status of the injector for IFMIF Linear Prototype Accelerator (LIPAc)

Shinto, Katsuhiro; Ichikawa, Masahiro; Takahashi, Hiroki; Kondo, Keitaro; Kasugai, Atsushi; Gobin, R.*; Sen$'e$e, F.*; Chauvin, N.*; Ayala, J.-M.*; Marqueta, A.*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.493 - 495, 2015/09

Development of the prototype accelerator (LIPAc) for the engineering validation of the International Fusion Materials Irradiation Facility (IFMIF) which is an accelerator driven neutron source has been progressed at Rokkasho. The LIPAc is a deuteron linear accelerator consisting of an injector, a radio-frequency quadrupole (RFQ) linac and a superconducting linac. The objective of LIPAc is to produce a CW beam with the energy and current of 9 MeV and 125 mA, respectively. The injector was developed at CEA/Saclay and succeeded to produce CW proton and deuteron beams of 100 keV/140 mA by autumn 2012. After the test at CEA/Saclay, the injector was shipped to the International Fusion Energy Research Centre (IFERC) in Rokkasho, Aomori and started to reassemble from the end of 2013. It was successfully produced proton beams in November 2014 at Rokkasho. While the ion source conditioning was done, the beam test was progressed. In this paper, the present status of the LIPAc injector at Rokkasho with some experimental results will be presented.

Journal Articles

Progress of the high current Prototype Accelerator for IFMIF/EVEDA

Okumura, Yoshikazu; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; Gobin, R.*; Harrault, F.*; Heidinger, R.*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.203 - 205, 2015/09

Under the framework of Broader Approach (BA) agreement between Japan and Euratom, IFMIF/EVEDA project was launched in 2007 to validate the key technologies to realize IFMIF. The most crucial technology to realize IFMIF is two set of linear accelerator each producing 125mA/CW deuterium ion beams up to 40MeV. The prototype accelerator, whose target is 125mA/CW deuterium ion beam acceleration up to 9MeV, is being developed in International Fusion Research Energy Center (IFERC) in Rokkasho, Japan. The injector developed in CEA Saclay was delivered in Rokkasho in 2014, and is under commissioning. Up to now, 100keV/120mA/CW hydrogen ion beams and 100keV/90mA/CW duty deuterium ion beams are successfully produced with a low beam emittance of 0.21 $$pi$$.mm.mrad (rms, normalized). Delivery of RFQ components will start in 2015, followed by the installation of RF power supplies in 2015.

Journal Articles

Effect of change of aging heat treatment pattern on the JK2LB jacket for the ITER central solenoid

Ozeki, Hidemasa; Saito, Toru; Kawano, Katsumi; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Yamazaki, Toru; Isono, Takaaki

Physics Procedia, 67, p.1010 - 1015, 2015/07

 Times Cited Count:3 Percentile:73.28(Physics, Applied)

Journal Articles

Non-destructive examination of jacket sections for ITER central solenoid conductors

Takahashi, Yoshikazu; Suwa, Tomone; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 25(3), p.4200904_1 - 4200904_4, 2015/06

 Times Cited Count:3 Percentile:20.23(Engineering, Electrical & Electronic)

The Japan Atomic Energy Agency (JAEA) is responsible for procuring all amounts of Central Solenoid (CS) Conductors for ITER, including CS jacket sections. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A total of 576 Nb$$_{3}$$Sn strands and 288 copper strands are cabled around the central spiral. The maximum operating current is 40 kA at magnetic field of 13 T. CS jacket section is circular in square type tube made of JK2LB, which is high manganese stainless steel with boron added. Unit length of jacket sections is 7 m and 6,300 sections will be manufactured and inspected. Outer/inner dimension and weight are 51.3/35.3 mm and around 90 kg, respectively. Eddy Current Test (ECT) and Phased Array Ultrasonic Test (PAUT) were developed for non-destructive examination. The defects on inner and outer surfaces can be detected by ECT. The defects inside jacket section can be detected by PAUT. These technology and the inspected results are reported in this paper.

Journal Articles

Behavior of Nb$$_{3}$$Sn cable assembled with conduit for ITER central solenoid

Nabara, Yoshihiro; Suwa, Tomone; Takahashi, Yoshikazu; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Sakurai, Takeru; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; et al.

IEEE Transactions on Applied Superconductivity, 25(3), p.4200305_1 - 4200305_5, 2015/06

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

Journal Articles

Status quo of the injector for the IFMIF/EVEDA prototype accelerator

Shinto, Katsuhiro; Ichikawa, Masahiro; Takahashi, Yasuyuki*; Kubo, Takashi*; Tsutsumi, Kazuyoshi; Kikuchi, Takayuki; Kasugai, Atsushi; Sugimoto, Masayoshi; Gobin, R.*; Girardot, P.*; et al.

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1009 - 1012, 2014/10

The prototype accelerator is being developed as an engineering validation for the International Fusion Materials Irradiation Facility (IFMIF) equipped with an accelerator-driven-type neutron source for developing fusion reactor materials. This prototype accelerator is a deuteron linear accelerator consisting of an injector, an RFQ, a superconducting linac and their auxiliaries. It aims to produce a CW D$$^+$$ beam with the energy and current of 9 MeV/125 mA. The injector test was completed at CEA/Saclay in 2012 for producing a CW H$$^+$$ beam and a CW D$$^+$$ beam with the energy and current of 100 keV/140 mA. After the beam test at CEA/Saclay, the injector was transported to the International Fusion Energy Research Centre (IFERC) located in Rokkasho, Aomori, Japan. In the end of 2013, installation of the injector was started at IFERC for the injector beam test beginning from summer 2014 in order to obtain better beam qualities to be satisfied with the injection and acceleration of the following accelerators. In this paper, some results of the injector beam test performed at CEA/Saclay and the status quo of the installation of the injector at IFERC are presented.

Journal Articles

Optimization of heat treatment of Japanese Nb$$_3$$Sn conductors for toroidal field coils in ITER

Nabara, Yoshihiro; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Suwa, Tomone; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Koizumi, Norikiyo; et al.

IEEE Transactions on Applied Superconductivity, 24(3), p.6000605_1 - 6000605_5, 2014/06

 Times Cited Count:7 Percentile:39.51(Engineering, Electrical & Electronic)

no abstracts in English

Journal Articles

Establishment of production process of JK2LB jacket section for ITER CS

Ozeki, Hidemasa; Hamada, Kazuya; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Kawano, Katsumi; Oshikiri, Masayuki; Saito, Toru; Teshima, Osamu*; Matsunami, Masahiro*

IEEE Transactions on Applied Superconductivity, 24(3), p.4800604_1 - 4800604_4, 2014/06

 Times Cited Count:16 Percentile:62.24(Engineering, Electrical & Electronic)

Journal Articles

Cabling technology of Nb$$_3$$Sn conductor for ITER central solenoid

Takahashi, Yoshikazu; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Uno, Yasuhiro; et al.

IEEE Transactions on Applied Superconductivity, 24(3), p.4802404_1 - 4802404_4, 2014/06

 Times Cited Count:25 Percentile:72.88(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) is procuring all amounts of Nb$$_3$$Sn conductors for Central Solenoid (CS) in the ITER project. Before start of mass-productions, the conductor should be tested to confirm superconducting performance in the SULTAN facility, Switzerland. The original design of cabling twist pitches is 45-85-145-250-450 mm, called normal twist pitch (NTP). The test results of the conductors with NTP was that current shearing temperature (Tcs) is decreasing due to electro-magnetic (EM) load cycles. On the other hand, the results of the conductors with short twist pitches (STP) of 25-45-80-150-450 mm show that the Tcs is stabilized during EM load cyclic tests. Because the conductors with STP have smaller void fraction, higher compaction ratio during cabling is required and possibility of damage on strands increases. The technology for the cables with STP was developed in Japanese cabling suppliers. The several key technologies will be described in this paper.

Journal Articles

Investigation of degradation mechanism of ITER CS conductor sample using TAKUMI

Hemmi, Tsutomu; Harjo, S.; Kajitani, Hideki; Nabara, Yoshihiro; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Koizumi, Norikiyo; Abe, Jun; Gong, W.; Aizawa, Kazuya; et al.

KEK Progress Report 2013-4, p.45 - 47, 2013/11

The gradual degradation was observed in the results for ITER CS conductor samples. To investigate its origin, the internal strain in the sample after the testing was successfully measured using a neutron diffraction technique non-destructively. Up to now, the transverse electromagnetic loading has been considered as an origin of the degradation due to the local bending at the high loading side (HLS). However, as a result of the neutron diffraction measurement, the large bending at the LLS of the HFZ was found. The large bending was considered as an origin of the strand buckling due to the large void generated by the transverse electromagnetic loading and the thermally induced residual compressive strain. For the improvement of the conductor performance on the strand buckling, the shorter twisting pitch (STP) can be considered. The result of the SULTAN testing of the conductor sample with STP found very effective, and the performance degradation was negligible.

Journal Articles

Cryogenic structures of superconducting coils for fusion experimental reactor "ITER"

Nakajima, Hideo; Shimamoto, Susumu*; Iguchi, Masahide; Hamada, Kazuya; Okuno, Kiyoshi; Takahashi, Yoshikazu

Teion Kogaku, 48(10), p.508 - 516, 2013/10

JAEA is procuring both structural materials and structural design of Toroidal Field (TF) coil and Central Solenoid (CS) for ITER. Although 316LN is used in the most parts of the superconducting magnets system, the cryogenic stainless steels, JJ1 and JK2LB, which were newly developed by JAEA and Japanese steel companies, are used in the highest stress area of TF coil case and whole CS conductor jackets, respectively. These two materials became commercially available based on demonstration of productivity and weldability of materials, and evaluations of 4 K mechanical properties of trial products including welded parts. In order to simplify quality control in mass production, JAEA has used materials specified in the material section of "Codes for Fusion Facilities - Rules on Superconducting Magnet Structure (2008)" issued by the Japan Society of Mechanical Engineers (JSME). The design of structural materials, production technology and quality control are described in this paper.

Journal Articles

Cable twist pitch variation in Nb$$_{3}$$Sn conductors for ITER toroidal field coils in Japan

Takahashi, Yoshikazu; Nabara, Yoshihiro; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Hamada, Kazuya; Matsui, Kunihiro; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 23(3), p.4801504_1 - 4801504_4, 2013/06

 Times Cited Count:11 Percentile:50.58(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) is the first to start the mass production of the TF conductors in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The height and width of the TF coils are 14 m and 9 m, respectively. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A circular multistage superconducting cable is inserted into a circular stainless steel jacket with a thickness of 2 mm. A total of 900 Nb$$_{3}$$Sn strands and 522 copper strands are cabled around the central spiral and the cable is inserted into a round-in-round stainless steel jacket. It was observed that the cabling pitch of the destructive sample is longer than the original pitch at cabling. The JAEA carried out the tensile tests of the cable and the measurement of the cable rotation during the insertion to investigate the cause of the elongation. The cause of elongation was clarified and the results will be described in this paper.

Journal Articles

Examination of Nb$$_{3}$$Sn conductors for ITER central solenoids

Nabara, Yoshihiro; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Takahashi, Yoshikazu; Matsui, Kunihiro; Koizumi, Norikiyo; et al.

IEEE Transactions on Applied Superconductivity, 23(3), p.4801604_1 - 4801604_4, 2013/06

 Times Cited Count:10 Percentile:48(Engineering, Electrical & Electronic)

no abstracts in English

Journal Articles

Evolution of cryogenic structural material development for superconducting coils in fusion reactor

Shimamoto, Susumu*; Nakajima, Hideo; Takahashi, Yoshikazu

Teion Kogaku, 48(2), p.60 - 67, 2013/03

JAEA started development of cryogenic structural material for Tokomak fusion reactor 30 years ago. Because, there was no specialized steel and mechanical data at 4K, JAEA settled target of mechanical characteristics which should satisfy requirements for coil structure at 4K and equipped evaluation facilities at 4K such as tensile test, fatigue test and so on. On the other hand JAEA initiated collaboration with steel industries in order to realize new cryogenic structural material and carried out mechanical evaluation at 4K on numerous samples which were supplied from industries. JAEA contributed standardization of these testing methods at 4K specified in the Japanese industrial standards (JIS). JAEA also supported to establish a construction code for structure of superconducting coil for fusion facility at the Japan Society of Mechanical Engineer (JSME), which is used in manufacture of the ITER toroidal field coil. This paper describes history over 30 years on the material development.

Journal Articles

Method to evaluate CIC conductor performance by voltage taps using CSMC facility

Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Koizumi, Norikiyo; Nakajima, Hideo

IEEE Transactions on Applied Superconductivity, 22(3), p.4803804_1 - 4803804_4, 2012/06

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

no abstracts in English

Journal Articles

Mass production of Nb$$_{3}$$Sn conductors for ITER toroidal field coils in Japan

Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4801904_1 - 4801904_4, 2012/06

 Times Cited Count:7 Percentile:41.4(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency is the first to start the mass production of the TF conductors in Phase IV in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The conductor is cable-in-conduit conductor with a central spiral. A total of 900 Nb$$_{3}$$Sn strands and 522 copper strands are cabled around the central spiral and then wrapped with stainless steel tape whose thickness is 0.1 mm. Approximately 60 tons of Nb$$_{3}$$Sn strands were manufactured by the two suppliers in December 2010. This amount corresponds to approximately 55% of the total contribution from Japan. Approximately 30% of the total contribution from Japan was completed as of February 2011. JAEA is manufacturing one conductor per month under a contract with two Japanese companies for strands, one company for cabling and one company for jacketing. This paper summarizes the technical developments including a high-level quality assurance. This progress is a significant step in the construction of the ITER machine.

Journal Articles

Preparation for the ITER central solenoid conductor manufacturing

Hamada, Kazuya; Nunoya, Yoshihiko; Isono, Takaaki; Takahashi, Yoshikazu; Kawano, Katsumi; Saito, Toru; Oshikiri, Masayuki; Uno, Yasuhiro; Koizumi, Norikiyo; Nakajima, Hideo; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4203404_1 - 4203404_4, 2012/06

 Times Cited Count:17 Percentile:63.98(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) has the responsibility for procurement of all of the ITER central solenoid (CS) conductor lengths. The CS conductor is composed of 576 Nb$$_{3}$$ Sn superconducting strands and 288 Cu strands assembled together into a multistage cable and protected by a circle-in-square sheath tube (jacket) with the outer dimension of 49 mm. In preparation for CS conductor production, the following R&D activities have been performed; (1) Mechanical tests at 4 K have been performed for jacket candidate materials such as 316LN and JK2LB, (2) Welding test for filler selection, (3) Measurement of coefficient of sliding friction using a 100-m long dummy cable, (4) Deformation characteristics of the conductor cross section after compaction and spooling. As a result of these R&D, the CS conductor jacket manufacturing technologies have been confirmed to start the procurement of the CS conductor.

252 (Records 1-20 displayed on this page)