検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 1 件中 1件目~1件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

発表言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Stability enhancement by hydrophobic anchoring and a cross-linked structure of a phospholipid copolymer film for medical devices

内田 和杜*; 増田 造*; 原 伸太郎*; 松尾 陽一*; Liu, Y.*; 青木 裕之; 浅野 吉彦*; 宮田 一輝*; 福間 剛士*; 小野 俊哉*; et al.

ACS Applied Materials & Interfaces, 16(30), p.39104 - 39116, 2024/07

 被引用回数:1 パーセンタイル:35.94(Nanoscience & Nanotechnology)

Zwitterionic MPC polymer coatings effectively deter blood coagulation and protein buildup on medical devices. Researchers synthesized MPC copolymers containing a cross-linking unit (MPTMSi) plus one of four hydrophobic anchoring groups (MPTSSi, BMA, EHMA, LMA) and applied them to PDMS, PP, and PMP. These treatments yielded uniformly hydrophilic, electrically neutral surfaces. Protein adsorption tests showed that PMBSi (BMA) best resisted fluorescently labeled BSA, while PMLSi (LMA) was comparatively weaker, although all four coatings minimized platelet adhesion. Further analyses linked these differences in protein adsorption to varying swelling behaviors in water. Indeed, PMLSi absorbed more water, allowing some protein infiltration yet still repelling platelets. When tested under circulating flow to mimic shear stress, PMMMSi (MPTSSi) and PMLSi coatings on PP and PMP demonstrated excellent durability and platelet repellency. Overall, this study highlights how hydrophobic moieties can boost both hemocompatibility and stability of MPC-based coatings, promising improved performance in medical devices requiring low protein fouling, reduced platelet adhesion, and long-term reliability.

1 件中 1件目~1件目を表示
  • 1